MIPS

TECHNOLOGIES

MIPS32® 4KEc™ Processor Core Datasheet October 29, 2004

The MIPS32® 4KEc™ core from MIPS® Technologies is a member of the MIPS32 4KE™ processor core family. Itis a
high-performance, low-power, 32-bit MIPS RISC core designed for custom system-on-silicon applications. The core is
designed for semiconductor manufacturing companies, ASIC developers, and system OEMs who want to rapidly integrate
their own custom logic and peripherals with a high-performance RISC processor. Itis highly portable across processes, and
can be easily integrated into full system-on-silicon designs, allowing developers to focus their attention on end-user
products. The 4KEc core is ideally positioned to support new products for emerging segments of the digital consumer,
network, systems, and information management markets, enabling new tailored solutions for embedded applications.

The 4KEc core implements the MIPS32 Release 2 Architecture with the MIPS16e™ ASE, and the 32-bit privileged
resource architecture. The Memory Management Unit (MMU) contains 4-entry instruction and data Translation Lookaside
Buffers (ITLB/DTLB) and a 16 or 32 dual-entry joint TLB (JTLB) with variable page sizes.The synthesizable 4KEc core
includes a Multiply/Divide Unit (MDU) that implements single cycle MAC instructions, which enable DSP algorithms to
be performed efficiently. It allows 32-bit x 16-bit MAC instructions to be issued every cycle, while a 32-bit x 32-bit MAC
instruction can be issued every 2 cycles.

Instruction and data caches are fully configurable from O - 64 Kbytes in size. In addition, each cache can be organized as
direct-mapped or 2-way, 3-way, or 4-way set associative. Load and fetch cache misses only block until the critical word

becomes available. The pipeline resumes execution while the remaining words are being written to the cache. Both caches
are virtually indexed and physically tagged to allow them to be accessed in the same clock that the address is translated.

An optional Enhanced JTAG (EJTAG) block allows for single-stepping of the processor as well as instruction and data
virtual address/value breakpoints. Additionally, real-time tracing of instruction program counter, data address, and data
values can be supported.

Figure 1shows a block diagram of the 4KEc core. The core is divideadqtdredandoptional blocks as shown.

EJTAG Off/On-Chip
Trace I/F
Trace
MDU I-cache TAP Off-Chip
Debug I/F
User-defined ﬂ o
Cop 2 block CP2 1~ Eyecution " <
Core MMU Cache o E 033
User-defined D] .| (RF/ALUISHIfY Controller Al £ a
CorExtend] = 5
block S
System _
Coprocessor TLB D-cache Power
Mgmt
| Fixed/Required | Optional |
Figure 1 4KEc Core Block Diagram
MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01 Document Number: MD00111

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Features

» b5-stage pipeline
32-bit Address and Data Paths
* MIPS32-Compatible Instruction Set

Multiply-Accumulate and Multiply-Subtract
Instructions (MADD, MADDU, MSUB, MSUBU)
Targeted Multiply Instruction (MUL)

Zero/One Detect Instructions (CLZ, CLO)

Wait Instruction (WAIT)

Conditional Move Instructions (MOVZ, MOVN)
Prefetch Instruction (PREF)

e MIPS32 Enhanced Architecture (Release 2) Features

Vectored interrupts and support for external interrupt
controller

Programmable exception vector base

Atomic interrupt enable/disable

GPR shadow registers (optionally, one or three
additional shadows can be added to minimize latency
for interrupt handlers)

Bit field manipulation instructions

Improved virtual memory support (smaller page sizes
and hooks for more extensive page table manipulation)

* MIPS16e™ Code Compression

16 bit encodings of 32 bit instructions to improve code
density

addresses and constants

SAVE & RESTORE macro instructions for setting up
and tearing down stack frames within subroutines
Improved support for handling 8 and 16 bit datatypes

» Programmable Cache Sizes

Individually configurable instruction and data caches
Sizes from 0 - 64KB

Direct Mapped, 2-, 3-, or 4-Way Set Associative
Loads block only until critical word is available
Write-back and write-through support

16-byte cache line size

Virtually indexed, physically tagged

Cache line locking support

Non-blocking prefetches

» Scratchpad RAM Support
Can optionally replace 1 way of the I- and/or D-cache
with a fast scratchpad RAM

Independent external pin interfaces for I- and D-
scratchpads

Interface allows back-stalling the core
» MIPS32 Privileged Resource Architecture

Count/Compare registers for real-time timer interrupts
| and D watch registers for SW breakpoints

Special PC-relative instructions for efficient loading of :

Programmable Memory Management Unit

16 or 32 dual-entry JTLB with variable page size
4-entry ITLB
4-entry DTLB

Simple Bus Interface Unit (BIU)

All'l/O’s fully registered

Separate unidirectional 32-bit address and data buses
Two 16-byte collapsing write buffers

Designed to allow easy conversion to other bus
protocols

CorExtend™ User Defined Instruction Set Extensions
(available in 4KEc Pro™ core)

Allows user to define and add instructions to the core at
build time

Maintains full MIPS32 compatibility

Supported by industry standard development tools
Single or multi-cycle instructions

Separately licensed; a core with this feature is known as
the 4KEc Pro™ core

Multiply/Divide Unit

Maximum issue rate of one 32x16 multiply per clock
Maximum issue rate of one 32x32 multiply every other
clock

Early-in iterative divide. Minimum 11 and maximum 34
clock latency (dividendr§) sign extension-dependent)

Coprocessor 2 interface

32 bit interface to an external coprocessor

Power Control

Minimum frequency: 0 MHz

Power-down mode (triggered by WAIT instruction)
Support for software-controlled clock divider

Support for extensive use of local gated clocks
EJTAG Debug and MIPS Trace

Support for single stepping

Virtual instruction and data address/value breakpoints
PC and data tracing w/ trace compression

TAP controller is chainable for multi-CPU debug
Cross-CPU breakpoint support

Testability

Full scan design achieves test coverage in excess of
99% (dependent on library and configuration options)
Optional memory BIST for internal SRAM arrays

20 index address bits allow access of arrays up to IMBArchitecture QOverview

The 4KEc core contains both required and optional blocks.
Required blocks are the lightly shaded areas of the block
diagram inFigure 1land must be implemented to remain

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

MIPS-compliant. Optional blocks can be added to the
4KEc core based on the needs of the implementation.

The required blocks are as follows:
+ Execution Unit
Multiply/Divide Unit (MDU)

System Control Coprocessor (CPO0)

Memory Management Unit (MMU)
Transition Lookaside Buffer (TLB)
Cache Controllers

Bus Interface Unit (BIU)

Power Management

Optional blocks include:
* Instruction Cache
Data Cache

Scratchpad RAM interface

Coprocessor 2 interface

CorExtend™ User Defined Instruction (UDI) interface
MIPS16e support

Enhanced JTAG (EJTAG) Controller

The section entitled "4KEc Core Required Logic Blocks"
on page 4 discusses the required blocks. The section
entitled "4KEc Core Optional Logic Blocks" on page 15
discusses the optional blocks.

Pipeline Flow

The 4KEc core implements a 5-stage pipeline with
performance similar to the R3000pipeline. The pipeline
allows the processor to achieve high frequency while
minimizing device complexity, reducing both cost and
power consumption.

The 4KEc core pipeline consists of five stages:

Instruction (I Stage)

Execution (E Stage)
* Memory (M Stage)
Align (A Stage)

Writeback (W stage)

The 4KEc core implements a bypass mechanism that
allows the result of an operation to be forwarded directly to

the instruction that needs it without having to write the
result to the register and then read it back.

Figure 2shows a timing diagram of the 4KEc core pipeline.

! | : ! |
| ! | E M [A [w |
| ; Bypass | | :
l | | Bypass) | |
I-Cache |RegRd ALUOp | X ! |
I-TLB | Dec|D-Ac] _D-cache | Align | [Reaw] |
! D-TLB| : | |
: 1-AL | A2 , : |
\ \ ~ : Bypass \ X :
: ! [Mul-16x16, 32x16 | Acc | [reaw] |
\ : ~ ! Bypass | : '
| \ i L) N |
| \ |Mu|—3l2X32/l [Acc | [reaw :
\ Iy)
| : | Div // | Acc | !
\ \ T 117 \ :

[reaw]
|

Figure 2 4KEc Core Pipeline
| Stage: Instruction Fetch

During the Instruction fetch stage:
* An instruction is fetched from instruction cache.

* MIPS16e instructions are expanded into MIPS32-like
instructions

E Stage: Execution

During the Execution stage:

Operands are fetched from register file.

The arithmetic logic unit (ALU) begins the arithmetic
or logical operation for register-to-register instructions.

* The ALU calculates the data virtual address for load
and store instructions.

The ALU determines whether the branch condition is
true and calculates the virtual branch target address for
branch instructions.

Instruction logic selects an instruction address.
All multiply and divide operations begin in this stage.

M Stage: Memory Fetch

During the Memory fetch stage:

The arithmetic ALU operation completes.

» The data cache access and the data virtual-to-physical
address translation are performed for load and store
instructions.

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

» Data cache look-up is performed and a hit/miss
determination is made.

* A 16x16 or 32x16 multiply calculation completes.

* A 32x32 multiply operation stalls the MDU pipeline
for one clock in the M stage.

» A divide operation stalls the MDU pipeline for a
maximum of 34 clocks in the M stage. Early-in sign
extension detection on the dividend will skip 7, 15, or
23 stall clocks.

A Stage: Align

During the Align stage:
» Load data is aligned to its word boundary.

* A 16x16 or 32x16 multiply operation performs the
carry-propagate-add. The actual register writeback is
performed in the W stage.

» A MUL operation makes the result available for
writeback. The actual register writeback is performed
in the W stage.

W Stage: Writeback

During the Writeback stage:

 For register-to-register or load instructions, the
instruction result is written back to the register file.

4KEc Core Required Logic Blocks

The 4KEc core consists of the following required logic
blocks, shown irFigure 1 These logic blocks are defined
in the following subsections:

» Execution Unit

» Multiply/Divide Unit (MDU)

» System Control Coprocessor (CPO0)
* Memory Management Unit (MMU)
» Transition Lookaside Buffer (TLB)

» Cache Controller

» Bus Interface Unit (BIU)

* Power Management

Execution Unit

The 4KEc core execution unit implements a load/store
architecture with single-cycle ALU operations (logical,

shift, add, subtract) and an autonomous multiply/divide
unit. The 4KEc core contains thirty-two 32-bit general-
purpose registers used for integer operations and address
calculation. Optionally, one or three additional register file
shadow sets (each containing thirty-two registers) can be
added to minimize context switching overhead during
interrupt/exception processing. The register file consists of
two read ports and one write port and is fully bypassed to
minimize operation latency in the pipeline.

The execution unit includes:
» 32-bit adder used for calculating the data address

» Address unit for calculating the next instruction
address

» Logic for branch determination and branch target
address calculation

* Load aligner

» Bypass multiplexers used to avoid stalls when
executing instructions streams where data producing
instructions are followed closely by consumers of their
results

» Leading Zero/One detect unit for implementing the
CLZ and CLO instructions

» Arithmetic Logic Unit (ALU) for performing bitwise
logical operations

 Shifter & Store Aligner

Multiply/Divide Unit (MDU)

The 4KEc core includes a multiply/divide unit (MDU) that
contains a separate pipeline for multiply and divide
operations. This pipeline operates in parallel with the
integer unit (1U) pipeline and does not stall when the 1U
pipeline stalls. This setup allows long-running MDU
operations, such as a divide, to be partially masked by
system stalls and/or other integer unit instructions.

The MDU consists of a 32x16 booth recoded multiplier,
result/accumulation registers (HI and LO), a divide state
machine, and the necessary multiplexers and control logic.
The first number shown (‘32 of 32x16) representsrthe
operand. The second number (‘16’ of 32x16) represents the
rt operand. The 4KEc core only checks the value of the
latter (t) operand to determine how many times the
operation must pass through the multiplier. The 16x16 and
32x16 operations pass through the multiplier once. A
32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16
multiply operation every clock cycle; 32x32 multiply

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

operations can be issued every other clock cycle. register file instead of the HI/LO register pair. By avoiding
Appropriate interlocks are implemented to stall the the explicit MFLO instruction, required when using the LO
issuance of back-to-back 32x32 multiply operations. The register, and by supporting multiple destination registers,
multiply operand size is automatically determined by logic the throughput of multiply-intensive operations is

built into the MDU. increased.

Divide operations are implemented with a simple 1 bit per Two other instructions, multiply-add (MADD) and

clock iterative algorithm. An early-in detection checks the multiply-subtract (MSUB), are used to perform the

sign extension of the dividends) operand. If rs is 8 bits ~ multiply-accumulate and multiply-subtract operations. The

wide, 23 iterations are skipped. For a 16-bit-wide rs, 15 MADD instruction multiplies two numbers and then adds

iterations are skipped, and for a 24-bit-wide rs, 7 iterationsthe product to the current contents of the HI and LO

are skipped. Any attempt to issue a subsequent MDU registers. Similarly, the MSUB instruction multiplies two

instruction while a divide is still active causes an U operands and then subtracts the product from the HI and

pipeline stall until the divide operation is completed. LO registers. The MADD and MSUB operations are

commonly used in DSP algorithms.

Table 1 lists the repeat rate (peak issue rate of cycles until

the operation can be reissued) and latency (hnumber of

cycles until a resultis available) for the 4KEc core multiply System Control Coprocessor (CPO)

and divide instructions. The approximate latency and

repeat rates are listed in terms of pipeline clocks. For a Inthe MIPS architecture, CPQ is responsible for the virtual-

more detailed discussion of latencies and repeat rates, refép-physical address translation and cache protocols, the

to Chapter 2 of thIPS32 4KE™ Processor Core Family exception control system, the processor’s diagnostics

Software User’'s Manual capability, the operating modes (kernel, user, and debug),

and whether interrupts are enabled or disabled.

Table 1 4KEc Core High-Performance Integer Multiply/ Configuration information, such as cache size and set
Divide Unit Latencies and Repeat Rates associativity, is also available by accessing the CPO

registers, listed in Table 2.

Operand
Size Table 2 Coprocessor 0 Registers in Numerical Order
(mul rt) Repeat
Opcode (div rs) Latency Rate Register Register
MULT/MULTU 16 bits 1 1 Number | Name Function
MADD/MADDU -
' . 0 Index® Index into the TLB array.
MSUB/MSUBU 32 bits 2 2 Y
) R Randomly generated index into th
16 bits 2 1 1 Rando TLB array
MUL :)
32 bits 3 2 Low-order portion of the TLB
8 bits 12 11 | 2 EntryLoO3 entry for even-numbered virtual
pages.
16 bits 19 18 -
DIV/DIVU Low-order portion of the TLB
24 bits 26 25 3 EntryLol3 entry for odd-numbered virtual
pages.
32 bits 33 32 - .
4 Context rl;’](zrr;]tgr to page table entry in
The MIPS architecture defines that the result of a multiply -
or divide operation be placed in the HI and LO registers. 4 Context- Controls the layout of the Contex
Using the Move-From-HI (MFHI) and Move-From-LO Configt register.
(MFLO) instructions, these values can be transferred to the Control bl —
eneral-purpose register file. ontro’ for vanable page sizes In
g purp g S PageMask TLB entries.
In addition to the HI/LO targeted operations, the MIPS32 5 PageGraf Controls the layout of the EntryLo
architecture also defines a multiply instruction, MUL, 9 PageMask and EntryHi registers,

which places the least significant results in the primary

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 2 Coprocessor 0 Registers in Numerical Order

Table 2 Coprocessor 0 Registers in Numerical Order

4%

[©)

Register Register Register Register
Number Name Function Number Name Function
' Controls the number of fixed User Trace .
6 Wired® (“wired”) TLB entries. 23 Datz User Trace control register.
Enables access via the RDHWR 23 TraceBP& | Trace breakpoint control.
7 HWREna | instruction to selected hardware
registers. o4 DEPG Program counter at last debug
exception.
Reports the address for the most
8 BadVAddr | " " ress.related exception, 25 Reserved | Reserved in the 4KEc core.
9 Count Processor cycle count. 26 ErcCil Used for software testing of cach
arrays.
: High-order portion of the TLB
10 EntryHP entry. 27 Reserved Reserved in the 4KEc core.
11 Comparé | Timer interrupt control. 28 TagLo/ Low-order portion of cache tag
DatalLo interface.
12 Statud Processor status and control. -
29 Reserved Reserved in the 4KEc core.
12 IntCti* Interrupt system status and control.
30 ErrorEPCG Program counter at last error.
Shadow register set status and
12 Srsct control. 31 DESAVE® | Debug handler scratchpad regist
; ; 1. Registers used in exception processing.
12 SRSMab Prowdes mapping from vectored ‘ _
interrupt to a shadow set. 2. Registers used during debug.
- 3. Registers used in memory management.
13 Causé Cause of last general exception.
14 Epd Program counter at last exception. Coprocessor 0 also contains the logic for identifying and
—— managing exceptions. Exceptions can be caused by a
15 PRId Processor identification and variety of sources, including boundary cases in data,
revision. external events, or program errors. Table 3 shows the
15 EBASE Exception vector base register. exception types in order of priority.
16 Config Configuration register. Table 3 4KEc Core Exception Types
16 Configl Configuration register 1. Exception Description
16 Config2 Configuration register 2. Reset Assertion ofSI_ColdResedr S|_Reset
16 Config3 Configuration register 3. signals.
17 LLAddr Load linked address. DSS EJTAG Debug Single Step.
18 WatchLd Low-order watchpoint address. E‘]TAC.; Debug Interrupt. Caused by th
assertion of the externBU_DINT
) X DINT . . = -
19 WatchHt | High-order watchpoint address. input, or by setting the EjtagBrk bit in
the ECR register.
20-22 Reserved Reserved in the 4KEc core.
I | NMI Assertion ofSI_NMIlsignal.
Debug control and exception
23 Debud - - -
status. Machine Check TL_B _vvnte that conflicts with an
existing entry.
23 | Trace PC/D | regi
ControB ata trace control register. Assertion of unmasked hardware or
Interrupt . .
software interrupt signal.
Trace "
23 Additional PC/Data trace control.
Control?

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 3 4KEc Core Exception Types (Continued)

Table 3 4KEc Core Exception Types (Continued)

Exception Description Exception Description
Deferred Watch Deferred Watch.(unmasked by K|DMt TLBS Store TLB hit to page with V=0.
>|(K|DM) transition). -
TLB Mod Store to TLB page with D=0.
EJTAG debug hardware instruction
DIB break matched. DBE Load or store bus error.
i EJTAG data hardware breakpoint
WATCH A referenge to an address in one of t DDBL i
watch registers (fetch). matched in load data compare.
Fetch address alignment error. .
AdEL 9 Interrupt Handling
Fetch reference to protected address.
TLBL Fetch TLB miss. The 4KEc core includes support for six hardware interrupt
. : pins, two software interrupts, and a timer interrupt. These
TLBL Fetch TLB hit to page with V=0. interrupts can be used in any of three interrupt modes, as
IBE Instruction fetch bus error. defined by Release 2 of the MIPS32 Architecture:
.. o of * Interrupt compatibility mode, which acts identically to
DBp EJTAG Breakpoint (execution o that in an implementation of Release 1 of the
SDBBP instruction). .
Architecture.
Sys Execution of SYSCALL instruction. « Vectored Interrupt (VI) mode, which adds the ability to
Bp Execution of BREAK instruction. prioritize and vector interrupts to a handler dedicated
: : to that interrupt, and to assign a GPR shadow set for
RI Execution of a Reserved Instruction. use during interrupt processing. The presence of this
Execution of a coprocessor instructio mode is denoted by the Vint bit in tHgonfig3register.
Cpu for a coprocessor that is not enabled This mode is architecturally optional; but it is always
: : : present on the 4KEc core, so the Vint bit will always
CEU Execution of a quExtend instruction read & a 1 for the 4KEc core.
when CorExtend is not enabled.)
- - — . » External Interrupt Controller (EIC) mode, which
Ov Execution of an arithmetic instruction redefines the way in which interrupts are handled to
that overflowed. provide full support for an external interrupt controller
Execution of a trap (when trap handling prioritization and vectoring of interrupts. This
T condition is true). presence of this mode denoted by the VEIC bit in the
Config3register. Again, this mode is architecturally
EJTAG Data Address Break (addresd optional. On the 4KEc core, the VEIC bit is set
DDBL / DDBS only) or EJTAG Data Value Break on .
externally by the static inpu§l_EICPresentto allow
Store (address+value). . .
system logic to indicate the presence of an external
WATCH A reference to an address in one of t interrupt controller.
watch registers (data).
Load address alignment error, The reset state of the processor is to !nterrupt compatibility
AdEL Load ref d add mode such that a processor supporting Release 2 of the
oad reference o protected address Architecture, like the 4KEc core, is fully compatible with
Store address alignment error. implementations of Release 1 of the Architecture.
AdES
Store to protected address. . . .
VI or EIC interrupt modes can be combined with the
TLBL Load TLB miss. optional shadow registers to specify which shadow set
TLBL Load TLB hit to page with V=0. should be u§ed upon entry toa pgrtlcular vector. The
shadow registers further improve interrupt latency by
TLBS Store TLB miss. avoiding the need to save context when invoking an

interrupt handler.

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

GPR Shadow Registers Modes of Operation

Release 2 of the MIPS32 Architecture optionally removes The 4KEc core supports three modes of operation: user
the need to save and restore GPRs on entry to high prioritynode, kernel mode, and debug mode. User mode is most
interrupts or exceptions, and to provide specified processooften used for applications programs. Kernel mode is

modes with the same capability. This is done by typically used for handling exceptions and operating
introducing multiple copies of the GPRs, calthdow system kernel functions, including CPO management and I/
sets and allowing privileged software to associate a O device accesses. An additional Debug mode is used
shadow set with entry to kernel mode via an interrupt during system bring-up and software development. Refer to
vector or exception. The normal GPRs are logically the EJTAG section for more information on debug mode.
considered shadow set zero.
OXFFFFFFFF
The number of GPR shadow sets is a build-time option on Memory Mapped
the 4KEc core. Although Release 2 of the Architecture OOXXFFFFs“fffES
defines a maximum of 16 shadow sets, the core allows one oxFF200000 Memory/EJTAG! kseg3
(the normal GPRs), two, or four shadow sets. The highest ~ OXFLFFFFFF
ber actually implemented is indicated by th Memory Mapped
number actually implemented is indicated by the OXE0000000
SRSCt} gsfield. If this field is zero, only the normal GPRs OXDEFFFFFF _
are implemented. Kernel virtual address space kseg2
Mapped, 512 MB
X 0xC0000000
Shadow sets are new copies of the GPRs that can be OXBFFFFFFF | Kernel virtual address space
substituted for the normal GPRs on entry to kernel mode Unmapped, 512 MB kseg1
via an interrupt or exception. Once a shadow set is bound 0XA0000000 Uncached
to a kernel mode entry condition, reference to GPRs work — ox9FFFFFFF | o el virtual address space
exa_ctly as one would _expect, but they are redlre_ct_ed to Unmapped, 512 MB kseg0
registers that are dedicated to that condition. Privileged 0x80000000
software may need to reference all GPRs in the register file, ox7FFFFFFF
even specific shadow registers that are not visible in the
current mode. The RDPGPR and WRPGPR instructions
are used for this purpose. The CSS field ofSR&Ctl
register provides the number of the current shadow registel
set, and the PSS field of tBRSCtlegister provides the .
. . . User virtual address space kuseg
number of the previous shadow register set (that which was Mapped, 2048 MB
current before the last exception or interrupt occurred). ’
If the processor is operating in VI interrupt mode, binding
of a vectored interrupt to a shadow set is done by writing to
the SRSMapregister. If the processor is operating in EIC
interrupt mode, the binding of the interrupt to a specific 0x00000000
shadow set is provided by the external interrupt controller, 1. This space is mapped to memory in user or kernel mode,
and is configured in an implementation-dependent way. and by the EJTAG module in debug mode.

Binding of an exception or non-vectored interrupt to a
shadow set is done by writing to the ESS field of #RSCtl
register. When an exception or interrupt occurs, the value
of SRSCtggis copied to SRSGtlkg and SRSCHggis set

to the value taken from the appropriate source. On an
ERET, the value of SRSGHgis copied back into
SRSCtLgsto restore the shadow set of the mode to which
control returns.

Figure 3 4KEc Core Virtual Address Map

Memory Management Unit (MMU)

The 4KEc core contains a fully functional MMU that
interfaces between the execution unit and the cache
controller. Although the 4KEc core implements a 32-bit
architecture, the MMU is modeled after that found in the
64-bit R4000 family, as defined by the MIPS32 Privileged
Resource Architecture (PRA).

8 MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

The 4KEc core implements a TLB-based MMU. The TLB

is to translate virtual addresses and their corresponding

consists of three translation buffers: a 16 or 32 dual-entryASIDs into a physical memory address. The translation is

fully associative Joint TLB (JTLB), a 4-entry fully
associative Instruction TLB (ITLB) and a 4-entry fully
associative data TLB (DTLB).

When an instruction address is calculated, the virtual

performed by comparing the upper bits of the virtual
address (along with the ASID) against each of the entries in
thetag portion of the joint TLB structure.

The JTLB is organized as pairs of even and odd entries

address is compared to the contents of the 4-entry ITLB. Ifcontaining pages that range in size from 4-Kbytes (or 1-
the address is not found in the ITLB, the JTLB is accessedKbyte) to 256-Mbytes into the 4-Gbyte physical address

If the entry is found in the JTLB, that entry is then written
into the ITLB. If the address is not found in the JTLB, a
TLB refill exception is taken.

space. By default, the minimum page size is normally 4-
Kbytes on the 4KEc core; as a build time option, it is
possible to specify a minimum page size of 1-Kbyte.

When a data address is calculated, the virtual address is The JTLB is organized in page pairs to minimize the

compared to both the 4-entry DTLB and the JTLB. If the
address is notfound in the DTLB, butis found in the JTLB,
that address is immediately written to the DTLB. If the
address is not found in the JTLB, a TLB refill exception is
taken.

Figure 4 shows how the ITLB, DTLB, and JTLB are
implemented in the 4KEc core.

Instruction
Cache
Tag RAM

v

Entry

Virtual Address

Instruction
Address
Calculator

ITLB

Instruction
Hit/Miss

DVA JTLB

Data

Hit/Miss

Comparator

t

Data
Cache
RAM

l Entry

DTLB

Data
Address
Calculator

Virtual Address

Figure 4 Address Translation During a Cache Access

Translation Lookaside Buffer (TLB)

The TLB consists of three address translation buffers:
» 16 dual-entry fully associative Joint TLB (JTLB)

» 4-entry fully associative Instruction TLB (ITLB)

* 4-entry fully associative Data TLB (DTLB)

Joint TLB (JTLB)

The 4KEc core implements a 16 or 32 dual-entry, fully
associative JTLB that maps 32 virtual pages to their

overall size. Eaclag entry corresponds to 2 data entries:

an even page entry and an odd page entry. The highest order
virtual address bit not participating in the tag comparison is
used to determine which of the data entries is used. Since
page size can vary on a page-pair basis, the determination
of which address bits participate in the comparison and
which bit is used to make the even-odd determination is
decided dynamically during the TLB look-up.

Instruction TLB (ITLB)

The ITLB is a small 4-entry, fully associative TLB
dedicated to performing translations for the instruction
stream. The ITLB only maps minimum sized pages/
subpages. The minimum page size is either 1-Kbyte or 4-
Kbyte, depending on thHeéageGrainandConfig3registers.

The ITLB is managed by hardware and is transparent to
software. The larger JTLB is used as a backing store for the
ITLB. If a fetch address cannot be translated by the ITLB,
the JTLB is used to attempt to translate it in the following
clock cycle. If successful, the translation information is
copied into the ITLB for future use. There is a two cycle
ITLB miss penalty.

Data TLB (DTLB)

The DTLB is a small 4-entry, fully associative TLB
dedicated to performing translations for loads and stores.
Similar to the ITLB, the DTLB only maps either 1-Kbyte
or 4-Kbyte pages/subpages depending orPtreGrain
andConfig3registers.

The DTLB is managed by hardware and is transparent to
software. The larger JTLB is used as a backing store for the
DTLB. The JTLB is looked up in parallel with the DTLB

to minimize the DTLB miss penalty. If the JTLB
translation is successful, the translation information is

corresponding physical addresses. The purpose of the TLB

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

copied into the DTLB for future use. There is a one cycle* The ASID field of the virtual address is the same as the
DTLB miss penalty. ASID field of the TLB entry.

Virtual-to-Physical Address Translation This match is referred to as a TL. If there is no match,

a TLB missexception is taken by the processor and
Converting a virtual address to a physical address begins b§oftware is allowed to refill the TLB from a page table of
comparing the virtual address from the processor with thevirtual/physical addresses in memory.
virtual addresses in the TLB; there is a match when the
virtual page number (VPN) of the address is the same as thEigure 5 shows a flow diagram of the address translation
VPN field of the entry, and either: process for two different page sizes.

» The Global () bit of the TLB entry is set, or

Virtual Address with 1M (22°) 4-Kbyte pages

39 3231 20 bits=1M pages 12 11 0
ASID | VPN Offset
8 20 12
Virtual-to-physical YOffset passed unchanged to
translation in TLB hysical memor
Bit 31 of the virtual _ _ ‘ P Y
address selects user and 32-bit Physical Address
kernel address spaces 1 e
| PFN | Offset I
Virtual-to-physical Offset passed unchanged
translation in TLB to physical memory
TLB
A
\Yell ™
I'L\
39 3231 24 23 0
ASID VPN Offset
8 8 24

8 bits = 256 pages
Virtual Address with 256 (28) 16-Mbyte pages

Figure 5 32-bit Virtual Address Translation

The top portion of Figure 5 shows a virtual address for a 4Hits, Misses, and Multiple Matches

Kbyte page size. The width of tiadfsetin Figure 5 is

defined by the page size. The remaining 20 bits of the Each JTLB entry contains a tag portion and a data portion.

address represent the virtual page number (VPN), and If a match is found, the upper bits of the virtual address are

index the 1M-entry page table. replaced with the page frame number (PFN) stored in the
corresponding entry in the data array of the joint TLB

The bottom portion of Figure 5 shows the virtual address (JTLB). The granularity of JTLB mappings is defined in

for a 16-Mbyte page size. The remaining 8 bits of the terms of TLBpagesThe 4KEc core’s JTLB supports pages

address represent the VPN, and index the 256-entry pagef different sizes ranging from 1 KB to 256 MB in powers

table. of 4.

In this figure, the virtual address is extended with an 8-bitlf no match occurs (TLB miss), an exception is taken and
address space identifier (ASID), which reduces the software refills the TLB from the page table resident in
frequency of TLB flushing during a context switch. This 8- memory. Software can write over a selected TLB entry or
bit ASID contains the number assigned to that process andise a hardware mechanism to write into a random entry.
is stored in the CPBntryHi register.

10 MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

The 4KEc core implements a TLB write compare

occur. On the TLB write operation, the write value is
compared with all other entries in the TLB. If a match

sets the TS bit in the CRRlatusregister, and aborts the
write operation.

selection depending on page size and the relationship
between the legal values in the mask register and the
selected page size.

Table 4 Mask and Page Size Values

Even/Odd Bank
Pagemask[28:11] Page Size Select Bit

00000000000000000 ;rKeEe(:t) VAddr[10]

000000000000000011 4KB VAddr[12]
000000000000001111 16KB VAddr[14]
000000000000111111 64KB VAddr[16]
000000000011111111 256KB VAddr[18]
000000001111111111 1MB VAddr[20]
000000111111111111 4MB VAddr[22]
000011111111111111 16MB VAddr[24]
001111111111111111 64MB VAddr[26]
11111211111121111119 256MB VAddr[28]

TLB Tag and Data Formats

Figure 6 shows the format of a TLiag entry. The entry is
divided into the follow fields:

* Global process indicator
» Address space identifier
 Virtual page number

» Compressed page mask

Setting the global process indicator (G bit) indicates that
mechanism to ensure that multiple TLB matches do not the entry is global to all processes and/or threads in the
system. In this case, the 8-bit address space identifier
(ASID) value is ignored since the entry is not relative to a
occurs, the 4KEc core takes a machine check exception, specific thread or process.

The ASID helps to reduce the frequency of TLB flushing
on a context switch. The existence of the ASID allows

Table 4 shows the address bits used for even/odd bank multiple processes to exist in both the TLB and instruction
caches. The current ASID value is stored inEh&yHi
register and is compared to the ASID value of each entry.
Figure 6 and Table 5 show the TLB tag entry format.

()

ASID[7:0]

VPN2[31:25]

VPN2[24:11] |CMASKI7:0]

1 8

7 14 8

Figure 6 TLB Tag Entry Format

Table 5 TLB Tag Entry Fields

Field Name

Description

Global Bit. When set, indicates that this
entry is global to all processes and/or threg
and thus disables inclusion of the ASID in
the comparison.

ds

ASID[7:0]

Address Space Identifier. Identifies with
which process or thread this TLB entry is
associated.

VPN2[31:25],
VPN2[24:11]

Virtual Page Number divided by 2. This fiel
contains the upper bits of the virtual page
number. Because it represents a pair of TL
pages, it is divided by 2. Bits 31:25 are
always included in the TLB lookup
comparison. Bits 24:11 are included
depending on the page size.

B

CMASK][7:0]

Compressed page mask value. This field i
compressed version of the page mask. It
defines the page size by masking the
appropriate VPN2 bits from being involve
comparison. It is also used to determine
which address bit is used to make the eve
odd page determination.

ba

bN-

Figure 7 and Table 6 show the TLB data array entry format.

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

11

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

PFEN([31:12] or [29:10])

C[2:0] D |V

20

3 1 1

Figure 7 TLB Data Array Entry Format

Table 6 TLB Data Array Entry Fields

Field Name

Description

Table 6 TLB Data Array Entry Fields (Continued)

Field Name Description

Valid bit. Indicates that the TLB entry, and
thus the virtual page mapping, are valid.
this bit is set, accesses to the page are
permitted. If the bit is cleared, accesses

=

to

the page cause a TLB Invalid exception

PFN([31:12] or
[29:10])

Physical Frame Number. Defines the upp
bits of the physical address.

The [29:10] range illustrates, that if
1Kbytes page granularity is enabled in th
PageGrain register, the PFN is shifted t
the right, before being appended to the
untranslated part of the virtual address.
this mode the upper two physical addre
bits are not covered by PFN but forced {
zero.

For page sizes larger than the minimum
configured page size, only a subset of the
bits is actually used.

In
S

Cacheability. Contains an encoded valu
of the cacheability attributes and
determines whether the page should be|
placed in the cache or not. The field is
encoded as follows:

11

Page Sizes and Replacement Algorithm

To assist in controlling both the amount of mapped space
and the replacement characteristics of various memory
regions, the 4KEc core provides two mechanisms. First, the
page size can be configured, on a per-entry basis, to map a
page size of 1Kbyte to 256Mbytes (in multiples of 4). The
CPOPageMaskegister is loaded with the mapping page
size, which is then entered into the TLB when a new entry
is written. Thus, operating systems can provide special
purpose maps. For example, a typical frame buffer can be
memory mapped with only one TLB entry.

The second mechanism controls the replacement algorithm
when a TLB miss occurs. To select a TLB entry to be
written with a new mapping, the 4KEc core provides a
random replacement algorithm. However, the processor
also provides a mechanism where a programmable number

CS[2:0] | Coherency Attribute of mappings can be locked into the TLB via the ORDed
Cacheable, noncoherent, register, thus avoiding random replacement.
000* |write through, no write
allocate.
Cacheable, noncoherent, Cache Controllers
001* . .
write through, write allocate
C[2:0] 010 Uncached The 4KEc core instruction and data cache controllers
support caches of various sizes, organizations, and set-
Cacheable, noncoherent, o
011 : X associativity. For example, the data cache can be 2 Kbytes
write back, write allocate o . - . .
- in size and 2-way set associative, while the instruction
100 Maps to entry 011b. cache can be 8 Kbytes in size and 4-way set associative.
101* [Maps to entry 011.b Each cache can each be accessed in a single processor
110 |Maps to entry 011b. cycle. In addition, each cache has its own 32-bit data path
and both caches can be accessed in the same pipeline clock
111* Maps to entry 010b. . - .
P Y cycle. Refer to the section entitled "4KEc Core Optional
*Values 2 and 3 are the required MIPS3p Logic Blocks" on page 15 for more information on
mappings for uncached and cacheable instruction and data cache organization.
references; other values may have differgnt
meanings in other MIPS32 processors. The cache controllers also have built-in support for
“Dirty” or write-enable bit. Indicates that rSepIe}[(r:]mg orl:a \rllva)rllt(i)tllc tgenscarcf:ehwnz ;szr?tc:pad Rfév:, r
the page has been written and/or is ee .efSGC 0. entitie Cha chpa on page °
D writable. If this bit is set, stores to the page more information on scratchpad RAMs.
are permitted. If the bitis cleared, stores {o
the page cause a TLB Modified exception.
12 MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Bus Interface (BIU) In No Mergemode, writes to a different word within the
same line are accumulated in the buffer. Writes to the same

The Bus Interface Unit (BIU) controls the external word cause the previous word to be driven onto the bus.

interface signals. Additionally, it contains the

implementation of the 32-byte collapsing write buffer. The In Full Mergemode, all combinations of writes to the same

purpose of this buffer is to store and combine write line are collected in the buffer. Any pattern of byte enables

transactions before issuing them at the external interfaceis possible.

When using the write-through cache policy, the write buffer

significantly reduces the number of write transactions on SimpleBE Mode

the external interface and reduces the amount of stalling in

the core due to issuance of multiple writes in a short periodto aid in attaching the 4KEc core to structures which

of time. When using a write-back cache policy, the write cannot easily handle arbitrary byte enable patterns, there is

buffer gathers the 4 words of dirty line writebacks. a mode that generates only “simple” byte enables. Only
byte enables representing naturally aligned byte, half, and

The write buffer is organized as two 16-byte buffers. Eachword transactions will be generated. Legal byte enable

buffer contains data from a single 16-byte aligned block of patterns are shown in Table 7.

memory. One buffer contains the data currently being

transferred on the external interface, while the other buffer Table 7 Valid SimpleBE Byte Enable Patterns

contains accumulating data from the core. Data from the

accumulation buffer is transferred to the external interface EB_BE[3:0]

buffer under one of these conditions: 0001

» When a store is attempted from the core to a different N
16-byte block than is currently being accumulated 0010

+ SYNC Instruction 0100

» Store to an invalid merge pattern 1000

» Any load or store to uncached memory 0011

» Aload to the line being merged 1100

» A complete 16B block has been gathered 1111

Note that if the data in the external interface buffer has not _
been written out to memory, the core is stalled until the The only case where aread can generate “non-simple” byte

memory write completes. After completion of the memory enables is on an uncached tri-byte load (LWL/LWR). In
write, accumulated buffer data can be written to the SimpleBE mode, such reads will be converted into a word

external interface buffer. read on the external interface.

Writes with non-simple byte enable patterns can arise when
a sequence of stores is processed by the merging write
buffer, or from uncached tri-byte stores (SWL/SWR). In
SimpleBE mode, these stores will be broken into two

Merge Control

The 4KEc core implements two 16-byte collapsing write

buffers that allow byte, halfword, or word writes from the . . _ _

core to be accumulated in the buffer into a 16-byte value separate write transactions, one with a valid halfword and a
second with a single valid byte. This splitting is

before bursting the data onto the bus in word format. Note;) .
that writes to uncached areas are never merged. independent of the merge pattern control in the write buffer.

The 4KEc core provides two options for merge pattern Hardware Reset

control:

* No merge For historical reasons within the MIPS architecture, the

« Full merge 4KEc core has two types of reset input sign@lsReset
andSI|_ColdReset
Functionally, these two signals are ORed together within
the core and then used to initialize critical hardware state.

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01 13

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Both reset signals can be asserted either synchronously signal. The external agent then decides whether to place the
asynchronously to the core clod, Clkin andwilltrigger device in a low power mode, such as reducing the system
a Reset exception. The reset signals are active high, andclock frequency.
must be asserted for a minimum o5 _Clkincycles. The
falling edge triggers the Reset exception. The primary Three additional bits, Statgg, , Statugg,, and Debug),
difference between the two reset signals is $#iaReset support the power management function by allowing the
sets a bit in the Status register; this bit could be used by user to change the power state if an exception or error
software to distinguish between the two reset signals, if occurs while the 4KEc core is in a low power state.
desired. The reset behavior is summarized in Table 8. Depending on what type of exception is taken, one of these
three bits will be asserted and reflected orthd=XL,
Table 8 4KEc Reset Types SI_ERL or EJ_DebugMoutputs. The external agent can

: look at these signals and determine whether to leave the
Sl_Reset | SI_ColdReset Action low power state to service the exception.
0 0 Normal Operation, no reset.
: The following 4 power-down signals are part of the system
1 0 Reset exception; sets interface and change state as the corresponding bits in the
Status.SRit. CPO registers are set or cleared:
X 1 Reset exception. » TheSI_RPsignal represents the state of the RP bit (27)

in the CPO Status register.

One (or both) of the reset signals must be asserted at powes- The S|_EXLsignal represents the state of the EXL bit
on or whenever hardware initialization of the core is (1) in the CPO Status register.

desired. A power-on reset typically occurs when the
machine is first turned on. A hard reset usually occurs when
the machine is already on and the system is rebooted.

The SI_ERLsignal represents the state of the ERL bit
(2) in the CPO Status register.

» TheEJ_DebugMsignal represents the state of the DM
In debug mode, EJTAG can request that a soft reset (via the bit (30) in the CPO Debug register.
Sl_Resepin) be masked. It is system dependent whether
this functionality is supported. In normal mode, the
Sl_Resepin cannot be masked. TB& ColdResepin is
never masked.

Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is
through execution of the WAIT instruction. When the
WAIT instruction is executed, the internal clock is
suspended; however, the internal timer and some of the
input pins §1_Int[5:0], SI_NM|, SI_Resetand
S|_ColdResgftcontinue to run. Once the CPU is in

Power Management

The 4KEc core offers a number of power management

features, mcltudlng Iow—pO\(/jver deS|g(;1, ac?ve pov:_er h instruction-controlled power management mode, any
management, and power-down modes ot operation. The interrupt, NMI, or reset condition causes the CPU to exit
core is a static design that supports slowing or halting the

X . . this mode and resume normal operation.
clocks, which reduces system power consumption during

idle periods. The 4KEc core asserts tis¢_Sleeignal, which is part of

the system interface bus, whenever the WAIT instruction is
executed. The assertion®f_Sleepndicates that the clock
has stopped and the 4KEc core is waiting for an interrupt.

The 4KEc core provides two mechanisms for system-level
low power support:

» Register-controlled power management
« Instruction-controlled power management Local clock gating

Register-Controlled Power Management The majority of the power consumed by the 4KEc core is
in the clock tree and clocking registers. The core has

The RP bit in the CPO Status register provides a softwareSUPPOrt for extensive use of local gated-clocks. Power

mechanism for placing the system into a low power state.CONscious implementors can use these gated clocks to
The state of the RP bit is available externally viaBieRP significantly reduce power consumption within the core.

14 MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

updated on a store hit, but cannot be selected for
replacement on a cache miss.

4KEc Core Optional Logic Blocks

The 4KEc core contains several optional logic blocks

shown in the block diagram Figure 1 The cache-locking function is always available on all data

cache entries. Entries can then be marked as locked or
unlocked on a per-entry basis using the CACHE

Instruction Cache instruction.

The instruction cache is an optional on-chip memory block
of up to 64 Kbytes. Because the instruction cache is
virtually indexed, the virtual-to-physical address) o]
translation occurs in parallel with the cache access rather! "€ 4KEc core incorporates on-chip instruction and data
than having to wait for the physical address translation. Thecaches that can each be accessed in a single processor
tag holds 22 bits of physical address, a valid bit, and a lockcycle. Each cache has its own 32-bit data path and can be

bit. The LRU replacement bits (0-6b per set depending orficcessed in the same pipeline clock cycle. Table 9 lists the

Cache Memory Configuration

The instruction cache block also contains and manages the ~ 12ble 9 4KEc Core Instruction and Data Cache

instruction line fill buffer. Besides accumulating data to be Attributes

written to the cache, instruction fetches that reference dat@ .

. Parameter Instruction Data

in the line fill buffer are serviced either by a bypass of that

data, or data coming from the external interface. The Size 0 - 64 Kbytes 0 - 64 Kbytes

instruction cache control logic controls the bypass

function. Organization L-4way set L -4 way set

associative associative

The 4KEc core supports instruction-cache locking. Cache Line Size 16 bytes 16 bytes

locking allows critical code or data segments to be locked -))

into the cache on a “per-line” basis, enabling the system | Read Unit 32 bits 32 bits

programmer to maximize the efficiency of the system write-through

cache. with write
allocate,

The cache-locking function is always available on all) . write-through

; PR ; ; Write Policies na . .

instruction-cache entries. Entries can then be marked as without write

locked or unlocked on a per entry basis using the CACHE allocate,

Instruction. write-back with
write allocate

Data Cache L\r/l;SS]{:rS(t;rt after miss word miss word

The data cache i_s an option_al on-chip memory block of upl cache Locking per line per line

to 64 Kbytes. This virtually indexed, physically tagged

cache is protected. Because the data cache is virtually

indexed, the virtual-to-physical address translation 0CCUr-5che Protocols

in parallel with the cache access. The tag holds 22 bits of
physical address, a valid bit, and a lock bit. There is an
additional array holding dirty bits and LRU replacement
algorithm bits (0-6b depending on associativity) for each *
set of the cache.

In addition to instruction-cache locking, the 4KEc core also
supports a data-cache locking mechanism identical to the,
instruction cache. Critical data segments are locked into the
cache on a “per-line” basis. The locked contents can be

The 4KEc core supports the following cache protocols:

Uncached:Addresses in a memory area indicated as
uncached are not read from the cache. Stores to such
addresses are written directly to main memory, without
changing cache contents.

Write-through, no write allocate: Loads and
instruction fetches first search the cache, reading main
memory only if the desired data does not reside in the

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Techn

15

ologies Inc. All rights reserved.

cache. On data store operations, the cache is first ~ MIPS16e Application Specific Extension

searched to see if the target address is cache resident. If

it is resident, the cache contents are updated, and maiThe 4KEc core has optional support for the MIPS16e ASE.
memory is also written. If the cache look-up misses, This ASE improves code density through the use of 16-bit
only main memory is written. encodings of MIPS32 instructions plus some MIPS16e-
specific instructions. PC relative loads allow quick access
to constants. Save/Restore macro instructions provide for
single instruction stack frame setup/teardown for efficient
subroutine entry/exit. Sign- and zero-extend instructions
improve handling of 8-bit and 16-bit datatypes.

» Write-through, write allocate : Similar to above, but
stores missing in the cache will cause a cache refill.
The store data is then written to both the cache and
main memory

» Write-back, write allocate: Stores that miss in the
cache will cause a cache refill. Store data, however, is
only written to the cache. Caches lines that are written Coprocessor 2 Interface
by stores will be marked as dirty. If a dirty line is
selected for replacement, the cache line will be written The 4KEc core can be configured to have an interface for
back to main memory. an on-chip coprocessor. This coprocessor can be tightly
coupled to the processor core, allowing high performance
solutions integrating a graphics accelerator or DSP, for
Scratchpad RAM example.

The 4KEc core also supports replacing up to one way of The coprocessor interface is extensible and standardized on

each cache with a scratchpad RAM. Scratchpad RAM is MIPS cores, allowing for design reuse. The 4KEc core

accessed via independent external pin interfaces for supports a subset of the full coprocessor interface standard:

instruction and data scratchpads. The external block whick82b data transfer, no Coprocessor 1 support, single issue,

connects to a scratchpad interface is user-defined and cain-order data transfer to coprocessor, one out-of-order data

consist of a variety of devices. The main requirement is thatransfer from coprocessor.

it must be accessible with timing similar to an internal

cache RAM. Normally, this means that an index will be The coprocessor interface is designed to ease integration

driven one cycle, a tag will be driven the following clock, with customer IP. The interface allows high-performance

and the scratchpad must return a hit signal and the data inommunication between the core and coprocessor. There

the second clock. The scratchpad can easily contain a largare no late or critical signals on the interface.

RAM/ROM or memory-mapped registers. Unlike the fixed

single-cycle cache timing, however, the scratchpad])

interface can also accommodate backstalling the core ~ CorExtend User Defined Instruction

pipeline if data is not available in a single clock. This Extensions

backstalling capability can be useful for operations which

require multi-cycle latency. It can also be used to enablp An optional CorExtend User Defined Instruction (UDI)

arbitration of external accesses to a shared scratchpad block enables the implementation of a small number of

memory. application-specific instructions that are tightly coupled to
the core’s execution unit. The interface to the UDI block is

The core’s functional interface to a scratchpad RAM is | external to the 4KEc Pro core.

slightly different than to a regular cache RAM. Additional

index bits allow access to a larger array, 1MB of scratchpadSuch instructions may operate on a general-purpose

RAM versus 4KB for a cache way. These bits come from register, inmediate data specified by the instruction word,

the virtual address, so on a 4KEc core care must be taken tor local state stored within the UDI block. The destination

avoid virtual aliasing. The core does not automatically refill may be a general-purpose register or local UDI state. The

the scratchpad way and will not select it for replacement onoperation may complete in one cycle or multiple cycles, if

cache misses. Additionally, stores that hit in the scratchpadiesired.

will not generate writes to main memaory.

EJTAG Debug Support

The 4KEc core provides for an optional Enhanced JTAG
(EJTAG) interface for use in the software debug of

16 MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

application and kernel code. In addition to standard user « Two data and four instruction breakpoints
mode and kernel modes of operation, the 4KEc core
provides a Debug mode that is entered after a debug Instruction breaks occur on instruction fetch operations,
exception (derived from a hardware breakpoint, single-stepand the break is set on the virtual address. Instruction
exception, etc.) is taken and continues until a debug breaks can also be made on the ASID value used by the
exception return (DERET) instruction is executed. During MMU. A mask can be applied to the virtual address to set
this time, the processor executes the debug exception breakpoints on a range of instructions.
handler routine.
Data breakpoints occur on load/store transactions.
Refer to the section called "External Interface Signals" onBreakpoints are set on virtual address and ASID values,
page 25 for a list of EJTAG interface signals. similar to the Instruction breakpoint. Data breakpoints can
be set on aload, a store, or both. Data breakpoints can also
The EJTAG interface operates through the Test Access Pollte set based on the value of the load/store operation.
(TAP), a serial communication port used for transferring Finally, masks can be applied to both the virtual address
test data in and out of the 4KEc core. In addition to the and the load/store value.
standard JTAG instructions, special instructions defined in
the EJTAG specification define what registers are selecieqps Trace
and how they are used.

The 4KEc core includes optional MIPS Trace support for
Debug Registers real-time tracing of instruction addresses, data addresses
and data values. The trace information is collected in an on-
Three debug registers (DEBUG, DEPC, and DESAVE) chip or off-chip memory, for post-capture processing by
have been added to the MIPS Coprocessor 0 (CPO) registarace regeneration software.
set. The DEBUG register shows the cause of the debug
exception and is used for setting up single-step operationsOn-chip trace memory may be configured in size from 0 to
The DEPC, or Debug Exception Program Counter, registei8 MB; it is accessed through the existing EJTAG TAP
holds the address on which the debug exception was takerinterface and requires no additional chip pins. Off-chip
This is used to resume program execution after the debugrace memory is accessed through a special trace probe and
operation finishes. Finally, the DESAVE, or Debug can be configured to use 4, 8, or 16 data pins plus a clock.
Exception Save, register enables the saving of general-
purpose registers used during execution of the debug
exception handler. Testability

To exit debug mode, a Debug Exception Return (DERET) .)))

instruction is executed. When this instruction is executed,TeStalbIIIty for prodL_Jctlon testing of the core is supported
the system exits debug mode, allowing normal execution of '"0Ugh the use of internal scan and memory BIST.
application and system code to resume.

_ Internal Scan
EJTAG Hardware Breakpoints

_) Full mux-based scan for maximum test coverage is
There are several types of simple hardware breakpoints supported, with a configurable number of scan chains.
defined in the EJTAG specification. These stop the normalaTpg test coverage can exceed 99%, depending on

operation of the CPU and force the system into debug gtandard cell libraries and configuration options.
mode. There are two types of simple hardware breakpoints

implemented in the 4KEc core: Instruction breakpoints and

Data breakpoints. Memory BIST

The 4KEc core can be configured with the following Memory BIST for the cache arrays and on-chip trace
breakpoint options: memory is optional, but can be implemented either through
« No data or instruction breakpoints the use of integrated BIST features provided with the core,
. One data and two instruction breakpoints ?Orc;lnserted with an industry-standard memory BIST CAD
MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01 17

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Integrated Memory BIST

Build-Time Configuration Options

The core provides an integrated memory BIST solution fpr1he 4KEc core allows a number of features to be
testing the internal cache SRAMs, using BIST controllefs cystomized based on the intended application. Table 10
and logic tightly coupled to the cache subsystem. SeVelaEummarizes the key configuration options that can be

parameters associated with the integrated BIST controll

are configurable, including the algorithm (March C+ or
IFA-13).

User-specified Memory BIST

Memory BIST can also be inserted with a CAD tool or

'Zelected when the core is synthesized and implemented.

For a core that has already been built, software can
determine the value of many of these options by querying
an appropriate register field. Refer to MB>S32 4KEc
Processor Core Family Software User's Mané@ia more
complete description of these fields. The value of some

other user-specified method. Wrapper modules and sighadptions that do not have a functional effect on the core are

buses of configurable width are provided within the core
facilitate this approach.

Table 10 Build-tim

onot visible to software.

e Configuration Options

Option Choices Software Visibility
Integer register file sets 1,2,or4 SR$GH
Integer register file implementation style Flops or generator N/A
TLB Size 16 or 32 dual entries Configthusize
TLB support for 1KB pages Present or not Condig3
TLB data array implementation style Flops or generator N/A
MIPS16e support Present or not Configl
MIPS16e implementation style Min area or max speed N/A
EJTAG TAP controller Present or not N/A
Instruction/data hardware breakpoints 0/0, 2/1, or 4/2 BS%BIEEBS%%N
MIPS Trace support Present or not Config3
MIPS Trace memory location On-core or off-chip ¥g§88“g%g
MIPS Trace on-chip memory size 256B - 8MB TCBCONEJG
MIPS Trace triggers 0-8 TCBCONHgg
Watch registers 0-8 Watchii
CorExtend interface (Pro only) Present or not Coiiy
Coprocessor?2 interface Present or not Confiyl
Instruction ScratchPad RAM interface Present or not Cpfig
Data ScratchPad RAM interface Present or not Cpafiy
I-cache size 0 - 64 KB Configl Configig
I-cache associativity 1,2,3,0r4 Configl
* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

18

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 10 Build-time Configuration Options

Option Choices Software Visibility

D-cache size 0-64 KB Configl, Configlg
D-cache associativity 1,2,3,0r4 Contigl
Memory BIST Integrated (March C+ or IFA-13), custom, or hone N/A
Scan options for improved coverage
around cache arrays Present or not N/A

. Top-level, integer register file array, TLB array, fine-
Clock gating grain, or none N/A

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

Instruction Set

The 4KEc core instruction set complies with the MIPS32
instruction set architecture. Table 11 provides a summary
of instructions implemented by the 4KEc core.

Table 11 4KEc Core Instruction Set

Instruction Description Function
ADD Integer Add Rd =Rs + Rt
ADDI Integer Add Immediate Rt = Rs + Immed
ADDIU Unsigned Integer Add Immediate Rt=Rs+ Immed
Unsigned Integer Add Immediate to PC Rt=PC+ | Immed
ADDIUPC (MIPS16 only)
ADDU Unsigned Integer Add Rd=Rs+ yRt
AND Logical AND Rd = Rs & Rt
ANDI Logical AND Immediate Rt=Rs& (0 ¢ || Immed)
Unconditional Branch _
B (Assembler idiom for: BEQ rO0, r0, offset) PC += (inf)offset
BAL Branch and Link GPR[31]=PC + 8
(Assembler idiom for: BGEZAL r0, offset) PC += (int)offset
" if COP2Condition(cc) ==
BC2F Branch On COP2 Condition False PC += (int)offset
if COP2Condition(cc) == 0
BC2FL Branch On COP2 Condition False Likely e|sZC += (inyoffset
Ignore Next Instruction
. if COP2Condition(cc) == 1
BC2T Branch On COP2 Condition True PC += (inoffset

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

19

Table 11 4KEc Core Instruction Set (Continued)

Instruction

Description

Function

BC2TL

Branch On COP2 Condition True Likely

if COP2Condition(cc) == 1
PC += (int)offset

else
Ignore Next Instruction

BEQ

Branch On Equal

if Rs == Rt
PC += (int)offset

BEQL

Branch On Equal Likely

if Rs == Rt
PC += (int)offset
else
Ignore Next Instruction

BGEZ

Branch on Greater Than or Equal To Zero

if IRs[31]
PC += (int)offset

BGEZAL

Branch on Greater Than or Equal To Zero An
Link

JCGPRI31]=PC +8
if IRS[31]
PC += (int)offset

BGEZALL

Branch on Greater Than or Equal To Zero An
Link Likely

GPR[31]=PC+8
dif IRs[31]
PC += (int)offset
else
Ignore Next Instruction

BGEZL

Branch on Greater Than or Equal To Zero
Likely

if IRs[31]
PC += (int)offset
else
Ignore Next Instruction

BGTZ

Branch on Greater Than Zero

if IRs[31] && Rs =0
PC += (int)offset

BGTZL

Branch on Greater Than Zero Likely

if IRS[31] && Rs =0
PC += (int)offset
else
Ignore Next Instruction

BLEZ

Branch on Less Than or Equal to Zero

if Rs[31] || Rs==0
PC += (int)offset

BLEZL

Branch on Less Than or Equal to Zero Likel

if Rs[31] || Rs ==
PC += (int)offset
else
Ignore Next Instruction

BLTZ

Branch on Less Than Zero

if Rs[31]
PC += (int)offset

BLTZAL

Branch on Less Than Zero And Link

GPR[31]=PC +8
if Rs[31]
PC += (int)offset

BLTZALL

Branch on Less Than Zero And Link Likely

GPR[31]=PC+8
if Rs[31]
PC += (int)offset
else
Ignore Next Instruction

20

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 11 4KEc Core Instruction Set (Continued)

=

Instruction Description Function
if Rs[31]
BLTZL Branch on Less Than Zero Likely eIsZC += (intjoffset
Ignore Next Instruction
if Rs I= Rt
BNE Branch on Not Equal PC += (int)offset
if Rs I= Rt
BNEL Branch on Not Equal Likely eIsZC += (ingoffset
Ignore Next Instruction
BREAK Breakpoint Break Exception
CACHE Cache Operation See Software User's Manual
CFC2 Move Control Word From Coprocessor 2 Rt = CCRI[2, n]
CLO Count Leading Ones Rd = NumLeadingOnes(Rs)
CLzZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)
COPO Coprocessor 0 Operation See Software User’'s Manual
COP2 Coprocessor 2 Operation See Coprocessor 2 Descriptio
CTC2 Move Control Word To Coprocessor 2 CCR[2, n] =Rt
. PC = DEPC
DERET Return from Debug Exception Exit Debug Mode
DI Atomically Disable Interrupts Rt = Status; Status g =0
. LO = (int)Rs / (int)Rt
DIV Divide HI = (in)Rs % (int)Rt
. . LO = (uns)Rs / (uns)Rt
DIVU Unsigned Divide HI = (UnS)Rs % (UNS)Rt
Stop instruction execution
EHB Execution Hazard Barrier until execution hazards are
cleared
El Atomically Enable Interrupts Rt = Status; Status E =1
if SR[2]
PC = ErrorEPC
else
ERET Return from Exception PC =EPC
SR[1]=0
SR[2]=0
LL=0
EXT Extract Bit Field Rt = ExtractField(Rs, pos,
size)
INS Insert Bit Field Rt= InsertField(Rs, Rt,
pos, size)
J Unconditional Jump PC = PC[31:28] || offset<<2

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

21

Table 11 4KEc Core Instruction S

et (Continued)

al

ual

Instruction Description Function
. GPR[31]=PC +8
JAL Jump and Link PC = PC[31:28] || offset<<2
. . Rd=PC+38
JALR Jump and Link Register PC = Rs
Like JALR, but also clears
JALR.HB Jump and Link Register with Hazard Barrien execution and instruction
hazards
Jump and Link Register Compact - donot | Rd=PC+2
JALRC execute instruction in jump delay slot(MIPS16 PC = Rs
only)
JR Jump Register PC =Rs
Like JR, but also clears
JR.HB Jump Register with Hazard Barrier execution and instruction
hazards
IRC Jump Register Compact - do not execute PC =Rs
instruction in jump delay slot (MIPS16 only)
LB Load Byte Rt = (byte)Mem[Rs+offset]
LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]
LH Load Halfword Rt = (half)Mem[Rs+offset]
LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]
Rt = Mem[Rs+offset]
LL Load Linked Word LL=1
LLAdr = Rs + offset
LUI Load Upper Immediate Rt = immediate << 16
LW Load Word Rt = Mem[Rs+offset]
LwcC2 Load Word To Coprocessor 2 CPR[2,n,0] = Mem[Rs+offset]
LWPC Load Word, PC relative Rt = Mem[PC+offset]
LWL Load Word Left See Architecture Reference Many
LWR Load Word Right See Architecture Reference Man
MADD Multiply-Add HI | LO += (int)Rs * (int)Rt
MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt
MFCO Move From Coprocessor 0 Rt = CPR[0, Rd, sel]
MFC2 Move From Coprocessor 2 Rt = CPR[2, Rd, sel]
MFHC2 Move From High Half of Coprocessor 2 Rt = CPR[2, Rd, sel] 63..32
MFHI Move From HI Rd = HI
MFLO Move From LO Rd=LO
MOVN Move Conditional on Not Zero FRt ~ #0then

Rd =Rs

22

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 11 4KEc Core Instruction Set (Continued)

al

Instruction Description Function
MOVZ Move Conditional on Zero TRt :9 then
Rd = Rs
MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt
MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt
MTCO Move To Coprocessor 0 CPR[0, n, Sel] =Rt
MTC2 Move To Coprocessor 2 CPR[2, n, sel] = Rt
. CPR[2, Rd, sel] = Rt ||
MTHC2 Move To High Half of Coprocessor 2 CPR[2. Rd, sel] a0
MTHI Move To HI HI =Rs
MTLO Move To LO LO=Rs
HI | LO =Unpredictable
MUL Multiply with register write Rd = ((int)Rs *
(iNRY) 310
MULT Integer Multiply HI | LO = (in)Rs * (int)Rd
MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd
NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)
NOR Logical NOR Rd = ~(Rs | Rt)
OR Logical OR Rd =Rs | Rt
ORI Logical OR Immediate Rt=Rs | Immed
PREF Prefetch Load Specified Line into Cache
Allows unprivileged access to
RDHWR Read Hardware Register registers enabled by HWREna
register
RDPGPR Read GPR from Previous Shadow Set Rt = SGPR[SRE®RH]
RESTORE Restore registers and deallocate stack frame See Architecture Reference Manu
(MIPS16 only)
ROTR Rotate Word Right RAd=Rt 5510 IRt 314
ROTRV Rotate Word Right Variable Rd=Rt gs1.0 IIRt 31Rs
SAVE Save registers and allocate stack frame See Architecture Reference Manu
(MIPS16 only)
SB Store Byte (byte)Mem[Rs+offset] = Rt
ifLL=1
SC Store Conditional Word mem[Rs+offset] = Rt
Rt=LL
SDBBP Software Debug Break Point Trap to SW Debug Handler
SEB Sign Extend Byte Rd = (byte)Rs

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc.

All rights reserved.

23

Table 11 4KEc Core Instruction Set (Continued)

ual

ual

Instruction Description Function
SEH Sign Extend Half Rd = (half)Rs
SH Store Half (halffMem[Rs+offset] = Rt
SLL Shift Left Logical Rd =Rt<<sa
SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]
if (int)Rs < (int)Rt
Rd=1
SLT Set on Less Than
else
Rd=0
if (int)Rs < (int)lmmed
SLTI Set on Less Than Immediate elsf:t =1
Rt=0
if (uns)Rs < (uns)immed
SLTIU Set on Less Than Immediate Unsigned elsf:t =1
Rt=0
if (uns)Rs < (uns)immed
SLTU Set on Less Than Unsigned eIsEd =1
Rd=0
SRA Shift Right Arithmetic Rd = (int)Rt >> sa
SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]
SRL Shift Right Logical Rd = (uns)Rt >> sa
SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]
SSNOP Superscalar Inhibit No Operation NOP
sSuB Integer Subtract Rt = (int)Rs - (int)Rd
SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd
SW Store Word Mem[Rs+offset] = Rt
SWC2 Store Word From Coprocessor 2 Mem[Rs+offset] = CPR[2,n,0]
SWL Store Word Left See Architecture Reference Man
SWR Store Word Right See Architecture Reference Mal
SYNC Synchronize See Software User's Manual
Synchronize Caches to Make Instruction Force I_D-caf:he erteback_ gnd I
SYNCI . . cache invalidate on specified
Writes Effective
address
SYSCALL System Call SystemCallException
. if Rs == Rt
TEQ Trap if Equal TrapException
TEQI Trap if Equal Immediate If Rs == (inImmed

TrapException

24

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 11 4KEc Core Instruction Set (Continued)

Instruction Description Function
TGE Trap if Greater Than or Equal if (injRs >= (.im)Rt
TrapException
TGEI Trap if Greater Than or Equal Immediate if (NORs >= (.'nt)lmmed
TrapException
TGEIU Trap if Greater Than or Equal Immediate if (uns)Rs >= (uns)immed
Unsigned TrapException
TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs = (uns)Rt
TrapException
TLBWI Write Indexed TLB Entry See Software Users Manual
TLBWR Write Random TLB Entry See Software Users Manual
TLBP Probe TLB for Matching Entry See Software Users Manual
TLBR Read Index for TLB Entry See Software Users Manual
TLT Trap if Less Than if (INYRs < (NHRE
TrapException
TLTI Trap if Less Than Immediate If (NORs < ('r.‘t)lmmed
TrapException
TLTIU Trap if Less Than Immediate Unsigned if (Uns)Rs < (.uns)lmmEd
TrapException
TLTU Trap if Less Than Unsigned if (uns)Rs < (_uns)Rt
TrapException
. if Rs 1= Rt
TNE Trap if Not Equal TrapException
TNEI Trap if Not Equal Immediate If Rs 1= (injimmed
TrapException
WAIT Wait for Interrupts Stall until interrupt occurs
WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSSRA] = Rt
WSBH Word Swap Bytes Within HalfWords Rd = Rig.i6 I Rt 3124 |l
Rtzo IRt 153
XOR Exclusive OR Rd =Rs "Rt
XORI Exclusive OR Immediate Rt = Rs ~ (uns)immed
ZEB Zero extend byte (MIPS16 only) Rt = (ubyte) Rs
ZEH Zero extend half (MIPS16 only) Rt = (uhalf) Rs

External Interface Signals

The pin direction key for the signal descriptions is shown
in Table 12 below.

This section describes the signal interface of the 4KEc

microprocessor core.

The 4KEc core signals are listed in Table 13 below. Note
that the signals are grouped by logical function, not by
expected physical location. All signals, with the exception
of EJ_TRST_Nare active-high signal&J_DINTand

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01 25

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

SI_NMilgo through edge-detection logic so that only one
exception is taken each time they are asserted.

Table 12 4KEc Core Signal Direction Key

Dir Description

I Input to the 4KEc core sampled on the rising edge of the appropriate CLK signal.

Output of the 4KEc core, unless otherwise noted, driven at the rising edge of the appropriate CLK|signal.

Asynchronous inputs that are synchronized by the core.

Static input to the 4KEc core. These signals are normally tied to either power or ground and should not
change state whil8l_ColdReses deasserted.

Table 13 4KEc Signal Descriptions

Signal Name | Type | Description

System Interface

Clock Signals:
Clock Input. All inputs and outputs, except a few of the EJTAG signals, are sampled apd/or
SI_CIkin . g C
- asserted relative to the rising edge of this signal.
SI_clkout 0 Reference Clock for the External Bus Interface. This clock signal provides a referenge for

deskewing any clock insertion delay created by the internal clock buffering in the cofe.

Reset Signals:

SI_ColdReset A Hard/Cold Reset Signal. Causes a Reset Exception in the core.

Non-Maskable Interrupt. An edge detect is used on this signal. When this signal is sampled

SLNMI A asserted (high) one clock after being sampled deasserted, an NMI is posted to the qore.
Soft/Warm Reset Signal. Causes a Reset Exception in the core. Sets Status.SR bit (if
S|_Reset A S|I_ColdReseis not asserted), but is otherwise ORed BithColdResédbefore it is used

internally.

Power Management Signals:

This signal represents the state of the ERL bit (2) in the CPO Status register and indicates the
SI_ERL @) error level. The core asseBt ERLwhenever a Reset, Soft Reset, or NMI exception ig
taken.

This signal represents the state of the EXL bit (1) in the CPO Status register and ind|cates
SI_EXL O the exception level. The core ass&tsEXLwhenever any exception other than a Reset,
Soft Reset, NMI, or Debug exception is taken.

This signal represents the state of the RP bit (27) in the CPO Status register. Softwafre can

SI_RP © write this bit to indicate that a reduced power mode may be entered.

This signal is asserted by the core whenever the WAIT instruction is executed. The asgertion

Sl_Sleep © of this signal indicates that the clock has stopped and that the core is waiting for an int¢rrupt.

Interrupt Signals:

Indicates whether an external interrupt controller is present. Value is visible to software in
S|_ElCPresent S the Config3/g,c register field.

SI_EISS[3:0] | General purpose register shadow set number to be used when servicing an interrupt|in EIC
- : interrupt mode.

26 MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 13 4KEc Signal Descriptions (Continued)

Signal Name

Type

Description

SI_IAck

Interrupt acknowledge indication for use in external interrupt controller mode. This s
is active for a singl&I_Clkincycle when an interrupt is taken. When the processor initig
the interrupt exception, it loads the value of $telnt[5:0] pins into theCauseg,p, field
(overlaid withCausgpy pp), and signals the external interrupt controller to notify it that t
current interrupt request is being serviced. This allows the controller to advance to ar
pending higher-priority interrupt, if desired.

gnal
tes

he
other

SI_Int[5:0]

I/A

Active high Interrupt pins. These signals are driven by external logic and when asse
indicate an interrupt exception to the core. The interpretation of these signals depends
interrupt mode in which the core is operating; the interrupt mode is selected by softy
TheSI_lIntsignals go through synchronization logic and can be asserted asynchronoy
SI_ClIkin.In External Interrupt Controller (EIC) mode, however, the interrupt pins are
interpreted as an encoded value, so they must be asserted synchronsLsBikimto
guarantee that all bits are received by the core in a particular cycle.

The interrupt pins are level sensitive and should remain asserted until the interrupt ha!
serviced.

In Release 1 Interrupt Compatibility mode:

« All 6 interrupt pins have the same priority as far as the hardware is concerned.

* Interrupts are non-vectored.

In Vectored Interrupt (VI) mode:

» TheSI_Intpins are interpreted as individual hardware interrupt requests.

« Internally, the core prioritizes the hardware interrupts and chooses an interrupt ve
In External Interrupt Controller (EIC) mode:

» An external block prioritizes its various interrupt requests and produces a vector nu
of the highest priority interrupt to be serviced.

» The vector number is driven on ti8_Intpins, and is treated as a 6-bit encoded valug
the range of 0..63.

» When the core starts the interrupt exception, signaled by the asseSibnAxdk it
loads the value of th8I_Int[5:0] pins into theCausg,p, field (overlaid with
Causgp7 |pp)- The interrupt controller can then signal another interrupt.

rted
onthe
are.

sly to

5 been

ctor.

mber

n

SI_IPL[5:0]

Current interrupt priority level from th@ausep, register field, provided for use by an
external interrupt controller. This value is updated when8i/dAckis asserted.

SI_IPTI[2:0]

Timer interrupts can be muxed or ORed into one of the interrupts, as desired in a part
system. This input indicates whi&l_Inthardware interrupt pin the timer interrupt pin
(SI_TimerlIn} is combined with external to the core. The value of this bus is visible to
software in théntCtl|pt, register field.

SLIPTI Combined w/ SI_Int
0-1 None
2 SI_Int[0]

3 SI_Int[1]
4 SI_Int[2]
5 SI_Int[3]
6

7

SI_Int[4]
SL_int[5]

icular

SI_SWInt[1:0]

o

Software interrupt request. These signals represent the valudRj1tg field of the
Causeregister. They are provided for use by an external interrupt controller.

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

27

Table 13 4KEc Signal Descriptions (Continued)

Signal Name Type Description

Timer interrupt indication. This signal is asserted wheneveCthmtandCompare
registers match and is deasserted wheiCtmapareregister is written. This hardware pir
represents the value of tiause, register field.

For Release 1 Interrupt Compatibility mode or Vectored Interrupt mode:

In order to generate a timer interrupt, Sie Timerintsignal needs to be brought back info
the 4KEc core on one of the & _Intinterrupt pins in a system-dependent manner.
Traditionally, this has been accomplished by mux@&igTimerintwith SI_Int[5]. Exposing
SI_TimerIntas an output allows more flexibility for the system designer. Timer interrupts
can be muxed or ORed into one of the interrupts, as desired in a particular systesi. Irte
hardware interrupt pin with which ttf&_TimerIntsignal is merged is indicated via the
SI_IPTlstatic input pins.

SI_Timerlint (@)

For External Interrupt Controller (EIC) mode:

TheSI_TimerlIntsignal is provided to the external interrupt controller, which then prioritizes
the timer interrupt with all other interrupt sources, as desired. The controller then encodes
the desired interrupt value on t8& Intpins. SinceSI_Intis usually encoded, ti&l_IPTI
pins are not meaningful in EIC mode.

Configuration Inputs:

Unique identifier to specify an individual core in a multi-processor system. The hardyare
value specified on these pins is available inGR&Numfield of theEBaseregister, so it

SI_CPUNum(9:0] S can be used by software to distinguish a particular processor. In a single processor system,
this value should be set to zero.
Indicates the base endianness of the core.
. EB_Endian Base Endian Mode
SI_Endian S - -
0 Little Endian
1 Big Endian
The state of these signals determines the merge mode for the 16-byte collapsing write|buffer.
Encoding Merge Mode
00, No Merge
SI_MergeMode[1:0] S 01, Reserved
10, Full Merge
11, Reserved
The state of these signals can constrain the core to only generate certain byte enables on
EC™ interface transactions. This eases connection to some existing bus standards.
SI_SimpleBE[1:0] Byte Enable Mode
00, All BEs allowed
SI_SimpleBE[1:0] S

Naturally aligned bytes, half-

0l words, and words only
10, Reserved
11, Reserved
External Bus Interface
28 MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 13 4KEc Signal Descriptions (Continued)

Signal Name Type Description
Indicates whether the target is ready for a new address. The core will not complete the
EB_ARdy address phase of a new bus transaction until the clock cycl&Bfté&Rdyis sampled
asserted.
EB Avalid o When asserted, indicates that the values on the address bus and access types lines are valid,
- signifying the beginning of a new bus transactiBB. Avalidmust always be valid.
EB Instr o When asserted, indicates that the transaction is an instruction fetch versus a data reference.
- EB_Instris only valid wherEB_AValidis asserted.
. When asserted, indicates that the current transaction is a write. This signal is only valid
EB_Write @) s
- whenEB_AValidis asserted.
When asserted, indicates that the current transaction is part of a cache fill or a write|burst.
EB Burst o Note that there is redundant information containeBB Burst EB_BFirst EB_BLastand
- EB_BLen This is done to simplify the system design—the information can be used in
whatever form is easiest.
EB_BFirst When asserted, indicates the beginning of the BiBsBFirstis always valid.
EB_BLast When asserted, indicates the end of the llBsBLasts always valid.
Indicates the length of the burst. This signal is only valid vE@nAValidis asserted.
EB_BLength[1:0] Burst Length
0 reserved
EB_BLen[1:0 0]
_BLen[1:0] 1 2
2 reserved
3 reserved
Static input which determines burst order. When asserted, sub-block ordering is used.|When
EB_SBlock S . L
deasserted, sequential addressing is used.
Indicates which bytes of tHeB_RDataor EB_WDatabuses are involved in the current
transaction. If afEB_BEsignal is asserted, the associated byte is being read or written.
EB_BElines are only valid whil&B_AValidis asserted.
EB_BE Read Data Bits Write Data Bits
Signal Sampled Driven Valid
EB_BE[3:0] o EB_BE[0] EB_RData[7:0] EB_WData[7:0]
EB_BE[1] EB_RData[15:8] EB_WData[15:8]
EB_BE[2] EB_RData[23:16] EB_WData[23:16]
EB_BE[3] EB_RData[31:24] EB_WData[31:24]
EB_A[35:2] o Addr_ess !mes for external bus. Only valid wheB_ AValidis asserted=B_A[35:32]are tied
to 0 in this core.
EB_WData[31:0] (0] Output data for writes.
EB_RData[31:0] | Input Data for reads.
Indicates that the target is driving read date&B) RDatdines.EB_RdVamust always be
EB_RdVal valid. EB_RdVamay never be sampled asserted until the rising edge after the corresponding
EB_ARdywas sampled asserted.
MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01 29

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 13 4KEc Signal Descriptions (Continued)

Signal Name Type Description
Indicates that the target of a write is ready. B2 WDatdines can change in the next clock
EB_WDRdy cycle.EB_WDRdywill not be sampled until the rising edge where the corresponding
EB_ARdyis sampled asserted.
Bus error indicator for read transactioB® RBErris sampled on every rising clock edg
EB_RBErr until an active sampling &B_RdValEB_RBErrsampled with assertdtB_RdVal
indicates a bus error during re&B_RBErrmust be deasserted in idle phases.
EB WBE Bus error indicator for write transactio&8_WBErris sampled on the rising clock edge
- following an active sample &B_WDRdyEB_WBErrmust be deasserted in idle phase
Indicates that any external write buffers are empty. The external write buffers must de
EB_EWBE EB_EWBEn the cycle after the correspondii_WDRdys asserted and ke&B_EWBE
deasserted until the external write buffers are empty.
EB_WWBE o When asserted, indicates that the core is waiting for external write buffers to empty.

| | CorExtend User-Defined Instruction Interface

Onthe 4KEc Pro core, an interface to user-defined instruction block is possibMIB882® Pro Series™ CorExtend™ Instructio
Integrator’'s Guidefor a description of this interface.

Coprocessor Interface

[¢)

assert

Instruction dispatch: These signals are used to transfer an instruction from the 4KEc core to the COP2 coprocessor.

CP2_ir_0[31:0]

(0]

Coprocessor Arithmetic and To/From Instruction Word.
Valid in the cycle befor€P2_as_QCP2_ts_(or CP2_fs_Qs asserted.

CP2_irenable_0

Enable Instruction Registering. When deasserted, no instruction strobes will be asse
the following cycle. When asserted, theraybe an instruction strobe asserted in the
following cycle. Instruction strobes inclu@2_as_QCP2_ts QCP2_fs 0

Note: This is the only late signal in the interface. The intended function is to use this si
as a clock gate condition on the capture latches in the coproces€&oir_0[31:0].

rted in

gnal

CP2_as 0

Coprocessor2 Arithmetic Instruction Strobe. Asserted in the cycle after an arithmetia
coprocessor2 instruction is available@R2_ir_0[31:0]. If CP2_abusy_G@vas asserted in
the previous cycle, this signal will not be asserted. This signal will never be asserted
same cycle thatP2_ts_0Oor CP2_fs_0s asserted.

n the

CP2_abusy 0

Coprocessor2 Arithmetic Busy. When asserted, a coprocessor2 arithmetic instructio
not be dispatchedP2_as_Qwill not be asserted in the cycle after this signal is assert

n will
od.

CP2_ts 0

Coprocessor2 To Strobe. Asserted in the cycle after a To COP2 Op instruction is av:
onCP2_ir_0[31:0]. If CP2_tbusyvas asserted in the previous cycle, this signal will not
asserted. This signal will never be asserted in the same cycl€Rtatas_®r CP2_fs_Qs
asserted.

hilable
be

CP2_tbusy 0O

To Coprocessor2 Busy. When asserted, a To COP2 Op will not be dispaBfP2ds_Qwill
not be asserted in the cycle after this signal is asserted.

CP2_fs O

Coprocessor2 From Strobe. Asserted in the cycle after a From COP2 Op instruction

S

available orCP2_ir_0[31:0]. If CP2_fbusy_®vas asserted in the previous cycle, this signal

will not be asserted. This signal will never be asserted in the same cyddthads_or
CP2_ts_Qs asserted.

CP2_fbusy 0O

From Coprocessor2 Busy. When asserted, a From COP2 Op will not be dispatched,
CP2_fs_0will not be asserted in the cycle after this signal is asserted.

30

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 13 4KEc Signal Descriptions (Continued)

Signal Name Type

Description

CP2_endian_0 (@)

Big Endian Byte Ordering. When asserted, the processor is using big endian byte o
for the dispatched instruction. When deasserted, the processor is using little-endian
ordering. Valid the cycle befoeP2_as_QCP2_fs_Oor CP2_ts_(s asserted.

CP2_inst32_0 o)

dering
byte

MIPS32 Compatibility Mode - Instructions. When asserted, the dispatched instructioh is

restricted to the MIPS32 subset of instructions. Please refer to the MIPS64 architect
specification for a complete description of MIPS32 compatibility mode. Valid the cyc
beforeCP2_as_QCP2_fs_(or CP2_ts_Qs asserted.

Note: The 4KEc core is a MIPS32 core, and will only issue MIPS32 instructions. Thy
CP2_inst32_Q0s tied high.

CP2_kd_mode_0 o

ure
e

Kernel/Debug Mode. When asserted, the processor is running in kernel or debug mode. Can

be used to enable “privileged” coprocessor instructions. Valid the cycle &#@eas_0
CP2_fs_(or CP2_ts_(Qs asserted.

a To Coprocessor instruction.

To Coprocessor Data: These signals are used when data is sent from the 4KEc core to the COP2 coprocessor, as part of

Coprocessor To Data Strobe. Asserted when To COP Op data is available on

completing

only

re to
the

CP2_tds 0 O | cp2_tdata_0[31:0]
Coprocessor To Order. Specifies which outstanding To COP Op the data is for. Valid
whenCP2_tds_(0s asserted.
CP2_torder_0[2:0] Order
000, Oldest outstanding To COP Op data trangfer
001, 2nd oldest To COP Op data transfer.
010, 3rd oldest To COP Op data transfer.
CP2_torder_0[2:0] O 011, 4th oldest To COP Op data transfer.
100, 5th oldest To COP Op data transfer.
105, 6th oldest To COP Op data transfer.
110, 7th oldest To COP Op data transfer.
115 8th oldest To COP Op data transfer.
Note: The 4KEc core will never send Data Out-of-Order, tl2_torder_0[2:0]is tied to
000,.
To Coprocessor Data Out-of-Order Limit. This signal forces the integer processor cq
limit how much it can reorder To COP Data. The value on this signal corresponds to
CP2_tordlim_0[2:0] S maximum allowed value to be used ©R2_torder_0[2:0]
Note: The 4KEc core will never send Data Out-of-Order, lBB2_tordlim_0[2:0]is
ignored.
CP2._ tdata_0[31:0] 0 To Coprocessor Data. Data to be transferred to the coprocessor. Vali€CRBetds_0s

asserted.

a From Coprocessor instruction.

From Coprocessor Data: These signals are used when data is sent to the 4KEc core from the COP2 coprocessor, as part of

completing

CP2_fds_0 |

Coprocessor From Data Strobe. Asserted when From COP Op data is available on
CP2_fdata_0[31:0]

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

31

Table 13 4KEc Signal Descriptions (Continued)

Valid

Signal Name Type Description
Coprocessor From Order. Specifies which outstanding From COP Op the data is for
only whenCP2_fds_Qs asserted.
CP2_forder_0[2:0] Order
000, Oldest outstanding From COP Op data transfer
001, 2nd oldest From COP Op data transfer.
010, 3rd oldest From COP Op data transfer.
CP2_forder_0[2:0] |
011, 4th oldest From COP Op data transfer.
100, 5th oldest From COP Op data transfer.
101, 6th oldest From COP Op data transfer.
110, 7th oldest From COP Op data transfer.
111, 8th oldest From COP Op data transfer.
Note: Only values 009and 003 are allowed se€P2_fordlim_0[2:0]below
From Coprocessor Data Out-of-Order Limit. This signal sets the limit on how much t
coprocessor can reorder From COP Data. The value on this signal corresponds to t
maximum allowed value to be used ©R2_forder_0[2:0]
CP2_fordlim_0[2:0] O | Note: The 4KEc core can handle one Out-of-Order From Data transfer.

CP2_fordlim_0[2:0]is therefore tied to 0QL The core will also never have more than tw
outstanding From COP instructions issued, which also automatically limits
CP2_forder_0[2:Q to 00L,.

ne

CP2_fdata_0[31:0]

From Coprocessor Data. Data to be transferred from coprocessor. Validd#rids_QGs
asserted.

COP2 coprocessor. This

Coprocessor Condition Code Check: These signals are used to report the result of a condition code check to the 4KEc cor
is only used for BC2 instructions.

e from the

Coprocessor Condition Code Check Strobe. Asserted when coprocessor condition @

ode

CP2_cces 0 : check bits are available @P2_ccc_0
Coprocessor Conditions Code Check. Valid wo@&?2_cccs_0s asserted. When asserte
CP2 ccc O | the branch instruction checking the condition code should take the branch. When deas

the branch instruction should not branch.

d,
serted,

Coprocessor Exceptions:

These signals are used by the COP2 coprocessor to report exception for each instruction.

ailable

CP2 excs 0 | Coprocessor Exception Strobe. Asserted when coprocessor exception signalling is av
- - onCP2_exc_@ndCP2_exccode .0
CP2 exc 0 | Coprocessor Exception. When asserted, a Coprocessor exception is signaled on
- = CP2_exccode_0[4:0Malid whenCP2_excs_(s asserted.
32 MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 13 4KEc Signal Descriptions (Continued)

Signal Name Type Description

Coprocessor Exception Code. Valid when bOB2_excs_@ndCP2_exc_(Qre asserted.

CP2_exccode[4:0] Exception

01016 (RI) Reserved Instruction Exception

10000, (IS1) Available for Coprocessor
CP2_exccode_0[4:0] specific Exception

10001, (1S1) Avalla}t_)le for Coprocessor

specific Exception
1001G C2E Exception
All others Reserved

Instruction Nullification: These signals are used by the 4KEc core to signal nullification of each instruction to the COP2 coprocessor.

CP2_nulls_0 (0] Coprocessor Null Strobe. Asserted when a nullification signal is avail&#& onull_0

Nullify Coprocessor Instruction. When deasserted, the 4KEc core is signalling that the
CP2 null 0 o inst_rL_Jction is not nullified. When _assert(_ed, the 4KEc core i_s s_ignallin_g that the instructipn is

- = nullified, and no further transactions will take place for this instruction. Valid when
CP2_nulls_Qs asserted.

Instruction Killing: These signals are used by the 4KEc core to signal killing of each instruction to the COP2 coprocessor|

CP2_kills_0 0] Coprocessor Kill Strobe. Asserted when kill signalling is availal@#@nkill_0[1:0].

Kill Coprocessor Instruction. Valid wheDP2_kills_Qis asserted.

CP2_kill_0O[1:0] Type of Kill
00, Instruction is not killed and
01, results can be committed.
CP2_kill_0[1:0] (0] 10, Instruction is killed.
(not due taCP2_exc_D
11 Instruction is killed.
2 (due toCP2_exc_P

If an instruction is killed, no further transactions will take place on the interface for this
instruction.

Miscellaneous COP2 signals:

CP2_reset (0] Coprocessor Reset. Asserted when a hard or soft reset is performed by the integef unit.

S COP2 Present. Must be asserted when COP2 hardware is connected to the Coprocgessor 2

CP2_present Interface.

CP?2 idle Coprocessor ldle. Asserted when the coprocessor logic is idle. Enables the processar to go
- into sleep mode and shut down the clock. Valid onyRR2_presenis asserted.

EJTAG Interface

TAP interface. These signals comprise the EJTAG Test Access Port. These signals will not be connected if the core doeg not
implement the TAP controller.

EJ TRST N | Active-low Test Reset Input (TRST*) for the EJTAG TAP. At power-up, the assertion pf
- - EJ_TRST_Nauses the TAP controller to be reset.

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01 33

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 13 4KEc Signal Descriptions (Continued)

te core

t the

ing
ode is

a low

Signal Name Type Description
EJ TCK I Test Clock Input (TCK) for the EJTAG TAP.
EJ_TMS I Test Mode Select Input (TMS) for the EJTAG TAP.
EJ_TDI I Test Data Input (TDI) for the EJTAG TAP.
EJ_TDO 0] Test Data Output (TDO) for the EJTAG TAP.
Drive indication for the output of TDO for the EJTAG TAP at chip level:
1: The TDO output at chip level must be in Z-state
EJ_TDOzstate O | 0: The TDO output at chip level must be driven to the valugloff DO
IEEE Standard 1149.1-1990 defines TDO as a 3-stated signal. To avoid having a 3-sta|
output, the 4KEc core outputs this signal to drive an external 3-state buffer.
Debug Interrupt:
EJ DINTsu S Value of DINTsup for the Implementation register. When high, this signal indicates tha
- P EJTAG probe can use the DINT signal to interrupt the processor.
Debug exception request when this signal is asserted in a CPU clock period after be
EJ_DINT deasserted in the previous CPU clock period. The request is cleared when debug m
entered. Requests when in debug mode are ignored.
Debug Mode Indication:
Asserted when the core is in Debug Mode. This can be used to bring the core out of
EJ_DebugM (0] power mode. In systems with multiple processor cores, this signal can be used to
synchronize the cores when debugging.
Device ID bits:

inputs to their own values.

These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller is not implemented,
inputs are not connected. These inputs are always available for soft core customers. On hard cores, the core “hardener” ¢4

these
n set these

EJ_ManuflD[10:0]

Value of the ManuflD[10:0] field in the Device ID register. As per IEEE 1149.1-1990
section 11.2, the manufacturer identity code shall be a compressed form of JEDEC st
manufacturer’s identification code in the JEDEC Publications 106, which can be fou
http://www.jedec.org/

ManuflD[6:0] bits are derived from the last byte of the JEDEC code by discarding the p
bit. ManuflD[10:7] bits provide a binary count of the number of bytes in the JEDEC ¢
that contain the continuation character (0x7F). Where the number of continuations
characters exceeds 15, these 4 bits contain the modulo-16 count of the number of
continuation characters.

andard
nd at:

arity
ode

EJ_PartNumber[15:0]

S

Value of the PartNumber[15:0] field in the Device ID register.

EJ_Version[3:0]

S

Value of the Version[3:0] field in the Device ID register.

System Implementation Dependent Outputs:

These signals come from EJTAG control registers. They have no effect on the core, but can be used to give EJTAG debuy
software additional control over the system.

gging

this

the

Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft resets. If
EJ_SRstE (0] - :
- signal is deasserted, none, some, or all soft reset sources are masked.
Peripheral Reset. EJTAG can assert this signal to request the reset of some or all of
EJ PerRst O . . -
- peripheral devices in the system.
34 MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 13 4KEc Signal Descriptions (Continued)

Signal Name Type Description
Processor Reset. EJTAG can assert this signal to request that the core be reset. This can be
EJ_PrRst (0] . .
fed into theSI_Resesignal.
TCtrace Interface
These signals enable an interface to optional off-chip trace memory. The TCtrace interface connects to the Probe Interfage Block

(PIB) which in turn connects to the physical off-chip trace pins.
Note that if on-chip trace memory is used, access occurs via the EJTAG TAP interface, and this interface is not required.

TC_ClockRatio[2:0]

Clock ratio. This is the clock ratio set by softward ®BCONTROLB.CRThe value will
be within the boundaries defined ¢ _CRMaxandTC_CRMinThe table below shows the
encoded values for clock ratio.

TC_ClockRatio
000
001
010
011
100
101
110
111

Clock Ratio

8:1 (Trace clock is eight times the core clock)

4:1 (Trace clock is four times the core clock)

2:1 (Trace clock is double the core clock)

1:1 (Trace clock is same as the core clock)

1:2 (Trace clock is one half the core clock)

1:4 (Trace clock is one fourth the core clock)

1:6 (Trace clock is one sixth the core clock)

1:8 (Trace clock is one eight the core clock)

TC_CRMax[2:0]

Maximum clock ratio supported. This static input sets the CRMax field of @BRCONFIG
register. It defines the capabilities of the Probe Interface Block (PIB) module.This fig
determines the minimum value B€_ClockRatio

Id

TC_CRMin[2:0]

Minimum clock ratio supported. This input sets the CRMin field oMGBCONFIG
register. It defines the capabilities of the PIB module. This field determines the maxi
value ofTC_ClockRatio

mum

TC_ProbeWidth[1:0]

This static input will set the PW field of tieCBCONFIGregister.

If this interface is not driving a PIB module, but some chip-level TCB-like module, then
field should be set to 2'b11 (reserved value for PW).

Number physical
data pin on PIB

4 bits

8 bits

16 bits

Not directly to PIB

TC_ProbeWidth
00
01
10
11

this

TC_PibPresent

Must be asserted when a PIB is attached to the TC Interface. When de-asserted (low)
other inputs are disregarded.

all the

TC_TrEnable

Trace Enable, when asserted the PIB must start running its output clock and can expe
data on all other outputs.

ct valid

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

35

Table 13 4KEc Signal Descriptions (Continued)

Signal Name Type Description

This signal is asserted when the Cal bit inTRBCONTROLBegister is set.

TC cCalibrate o For a simple PIB which only serves one TCB, this pin can be ignored. For a multi-core
- capable PIB which also us&€_ValidandTC_Stall the PIB must start producing the
calibration pattern when this signal is asserted.

This input identifies the number of bits picked up by the probe interface module in each
“cycle”.
If TC_ClockRatidndicates a clock-ratio higher than 1:2, then clock multiplication in the
Probe logic is used. The “cycle” is equal to each core clock cycle.

If TC_ClockRatidndicates a clock-ratio lower than or equal to 1:2, then “cycle” is (clgck-
ratio * 2) of the core clock cycle. For example, with a clock ratio of 1:2, a “cycle” is equal
to core clock cycle; with a clock ratio of 1:4, a “cycle” is equal to one half of core clo¢ck
cycle.

This input controls the down-shifting amount and frequency of the trace word on
TC_Data[63:0] The bit width and the correspondifi@_DataBitsvalue is shown in the
table below.

TC_DataBits[2:0] |

Probe uses following
bits from TC_Data each

TC_DataBits[2:0] cycle

000 TC_Data[3:0]

001 TC_Data[7:0]

010 TC_Data[15:0]

011 TC_Data[31:0]

100 TC_Data[63:0]

Others Unused

This input might change as the valueTdd_ClockRatio[2:0]changes.

Asserted when a valid new trace word is started off theData[63:0] signals.

TC_Valid o - .
- TC_Validis only asserted wherC_DataBitsis 100.

When asserted, a nellC_Validin the following cycle is stalledTC_Validis still asserted,
but theTC_Datavalue andrC_\Validare held static, until the cycle aft€C_ Stallis sampled
TC_Stall low.

TC_Stallis only sampled in the cycle before a nE@&_Validcycle, and only when
TC_DataBitsis 100, indicating a full word ofC_Data

Trace word data. The value on this 64-bit interface is shifted down as indicated in
TC_DataBits[2:0] In the first cycle where a new trace word is valid on all the bits andg
TC_DataBits[2:0]is 100,TC_Validis also asserted.

TC_Data[63:0] O | The Probe Interface Block (PIB) will only be connected to [(N-1):0] bits of this output Jus.

N is the number of bits picked up by the PIB in each core clock cycle. For clock ratigs 1:2
and lower, N is equal to the number of physical trace pins (legal values of N are 4, 8, oy 16).
For higher clock ratios, N is larger than the number of physical trace pins.

Rising edge trigger input. The source should be the Probe Trigger input. The input i

TC_ProbeTrigin A considered asynchronous; i.e., it is double registered in the core.

. Single cycle (relative to the “cycle” defined the descriptiom@©f DataBit$ high strobe,
TC_ProbeTrigOut o trigger output. The target of this trigger is intended to be the external probe’s trigger optput.
TC_ChipTrigin A Rising edge trl.g.ger !nput. The source shogld be on-chip. The input is considered

asynchronous; i.e., it is double registered in the core.
36 MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 13 4KEc Signal Descriptions (Continued)

Signal Name Type Description

TC_ChipTrigOut o $|ngle cycle (relative to core plock) high strobe, trigger output. The target of this trigger is
intended to be an on-chip unit.

Performance Monitoring Interface

These signals can be used to implement performance counters, which can be used to monitor hardware/software perfofmance.

PM_DCacheHit (0] This signal is asserted whenever there is a data cache hit.
PM_DCacheMiss (0] This signal is asserted whenever there is a data-cache miss.
PM_DTLBHit (0] This signal is asserted whenever there is a hit in the data TLB.
PM_DTLBMiss 0 This signal is asserted whenever there is a miss in the data TLB.
PM_ICacheHit (0] This signal is asserted whenever there is an instruction-cache hit.
PM_ICacheMiss (0] This signal is asserted whenever there is an instruction-cache miss.
PM_InstComplete (0] This signal is asserted each time an instruction completes in the pipeline.

PM_ITLBHit (0] This signal is asserted whenever there is an instruction TLB hit.

PM_ITLBMiss (0] This signal is asserted whenever there is an instruction TLB miss.

PM_JTLBHit (0] This signal is asserted whenever there is a joint TLB hit.

PM_JTLBMiss (0] This signal is asserted whenever there is a joint TLB miss.

PM_WTBMerge (0] This signal is asserted whenever there is a successful merge in the write-through bpffer.
PM_WTBNoMerge (0] This signal is asserted whenever a non-merging store is written to the write-through buffer.

ScratchPad RAM interface

This interface allows a ScratchPad RAM (SPRAM) array to be connected in parallel with the cache arrays, enabling fast pccess to
data. There are independent interfaces for Instruction and Data ScratchPads. Signals related to the Instruction Scrédchpad inte
are prefixed with “ISP_". Signals related to the Data Scratchpad interface are prefixed with “DSP_". Note: In order to achieve single
cycle access, the ScratchPad interface is not registered, unlike the other core interfaces. This requires more careful timing
considerations.

DSP_TagAddr[19:4] (0] Virtual index into the SPRAM used for tag reads and writes.
DSP_TagRdStr (0] Tag Read Strobe - Hit, Stall, TagRdValue use this strobe.
DSP_TagWirStr o Tag Write Strobe - If SPRAM tag is software configurable, this signal will indicate whep to

update the tag value.

Tag Compare Value - This bus is used for both tag comparison and tag write value.

DSP_TagCmpValue[23:0 o For tag_com_parl_son, the bus usage is {PA[31:10], 2’'b0} and contains the address to
determine hit/miss.

For tag writes, the bus contains {PA[31:10], Lock, Valid} from TagLoregister.

DSP_DataAddr[19:2] (0] Virtual index into the SPRAM used for data reads and writes.
DSP_DataWrValue[31:0] 0] Data Write Value - Data value to be written to the data array.
DSP_DataRdStr (0] Data Read Strobe - Indicates that the data array should be read.
DSP_DataWrStr (0] Data Write Strobe - Indicates that the data array should be written.
DSP_DataWrMask[3:0] O Data Write Mask - Byte enables for a data write.

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01 37

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 13 4KEc Signal Descriptions (Continued)

Integrated Memory BIST Interface

These signals provide the interface to optional integrated memory BIST capability for testing the SRAM arrays within the

ter.

Signal Name Type Description
DSP_DataRdValue[31:0] I Data Read Value - Data value read from the data array.
. Tag Read Value - Tag value read from the tag array. Writtératioregister on a CACHE
DSP_TagRdValue[23:0] ! instruction. Read value maps into th@sgLofields: {PA[31:10], Lock, Valid}
DSP_Hit I Hit - Indicates that this read was to an address covered by the SPRAM.
DSP_Stall | Stall - Indicates that the read has not yet completed.
DSP_Present S Present - Indicates that a SPRAM array is connected to this port.
ISP_Addr[19:2] (0] Virtual index into the SPRAM used for both reads and writes of tag and data.
Read Strobe - indicates a read of the tag and data arrays. Hit and Stall signals are alsp based
ISP_RdStr O .
off of this strobe.
ISP_TagWrStr o Tag Write Strobe - If SPRAM tag is software configurable, this signal will indicate whep to
update the tag value.
Write/Compare Data
For data writes, this is the value to be written to the data array.
For tag writes the bus contains the {8'b0, PA[31:10], Lock, Valid} from the TagLo regig
ISP_DataTagValue{31:0] o For tag comparison, the bus has the address to be used for hit/miss determination in the
format {8'b0, PA[31:10], Uncacheable, 1’'b0}. When high, the Uncacheable bit indicates
that the physical address bits (PA[31:10]) are to an uncacheable address; when the
Uncacheable bit is low, the physical address is to a cacheable address.
ISP_DataWrStr (0] Data Write Strobe - Indicates that the data array should be written.
ISP_DataRdValue[31:0] I Data Read Value - Data value read from the data array.
. Tag Read Value - Tag value read from the tag array. Writtéiatoregister on a CACHE
ISP_TagRdValue[23:0] instruction. Read value maps into th@sgLofields: {PA[31:10], Lock, Valid}
ISP_Hit I Hit - Indicates that this read was to an address covered by the SPRAM.
ISP_Stall I Stall - Indicates that the read has not yet completed.
ISP_Present S Present - Indicates that a SPRAM array is connected to this port.

core.

ay.

t array.

L array.

select

gmbinvoke | Enable signal for integrated BIST controllers.
gmbdone (0] Common completion indicator for all integrated BIST sequences.
gmbddfail (0] When high, indicates that the integrated BIST test failed on the data cache data arr,
gmbtdfail @) When high, indicates that the integrated BIST test failed on the data cache tag array.
gmbwdfail @) When high, indicates that the integrated BIST test failed on the data cache way seled
gmbdifail o When high, indicates that the integrated BIST test failed on the instruction cache datd
gmbtifail (0] When high, indicates that the integrated BIST test failed on the instruction cache tag array.
gmbuwitail o When high, indicates that the integrated BIST test failed on the instruction cache way
array.
38 MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 13 4KEc Signal Descriptions (Continued)

Signal Name | Type |

Description

Scan Test Interface

These signals provide an interface for testing the core. The use and configuration of these pins are implementation-depe

ndent.

gscanenable

This signal should be asserted while scanning vectors into or out of the core. The
gscanenablsignal must be deasserted during normal operation and during capture ¢
in test mode.

locks

apture

This signal should be asserted during all scan testing both while scanning and during ¢
gscanmode | . - :

clocks. Thegscanmodsignal must be deasserted during normal operation.

This signal controls the read and write strobes to the cache SRAMgsbanmodés
gscanramwr |

asserted.
gscanin_X | These signal(s) are the inputs to the scan chain(s).
gscanout_X (0] These signal(s) are the outputs from the scan chain(s).
BistIn[n:0] | Input to user-specified BIST controller.
BistOut[n:0] o Output from user-specified BIST controller.

EC Interface Transactions

On the rising edge of clock 3, the 4KEc core samples

EB_ARdyasserted and continues to drive the address

The 4KEc core implements the EC™ interface for its bus the rising edge of clock 4.

transactions. This interface uses a pipelined, in-order

protocol with independent address, read data, and write
data buses. The following subsections describe the four
basic bus tra_nsactlons: single read, single write, burst read,EB*ARdy TIIN 77T\
and burst write.

Single Read

Figure 8 shows the basic timing relationships of signals
during a simple read transaction. During a single read

and byte enable information ori&B_BE[3:0]. To

maximize performance, the EC interface does not define a
maximum number of outstanding bus cycles. Instead it
provides the&eB_ARdynput signal. This signal is driven by

Clock # 1 2 3 4 5 6 7 8
o [L] LI LT L] L L
ait, \
es_apsiz [////X__v4e [TV TTTT
£6 Bl id // [T
EB_Avalid > Driven by system logi
/i
_ esRroaasL 0/ 717 77T TTT 1K 7TV TT7 77777777
cycle, the 4KEc core drives the address &o A[35:2] - /__(
B [4
EB_RBErr /_ _\
eswie ///], \\2/iiiiiiiiiiiiiiiiii

external logic and controls the generation of addresses on

the bus.

In the 4KEc core, the address is driven whenever it
becomes available, regardless of the stateBofARdy
However, the 4KEc core always continues to drive the
address until the clock aft&B_ARdyis sampled asserted.

until

Figure 8 Single Read Transaction Timing Diagram

memory space. ThHEB_AValidsignal is driven in each

For example, at the rising edge of the clock 2 in Figure 8,drivesEB_Writelow to indicate a read transaction.
theEB_ARdsignal is sampled low, indicating that external

logic is not ready to accept the new address. However, thghe EB_RData[31:0JandEB_RdValsignals are first

4KEc core still drive€€B_A[35:2]in this clock as shown.

TheEB_Instrsignal is only asserted during a single read
cycle if there is an instruction fetch from non-cacheable

clock thatEB_A[35:2]is valid on the bus. The 4KEc core

sampled on the rising edge of clock 4, one clock after

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01 39

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

EB_ARdyis sampled asserted. Data is sampled on every
clock thereafter untiEB_RdValis sampled asserted.

If a bus error occurs during the data transaction, external
logic assert&B_RBErrin the same clock &B_RdVal

Single Write

Figure 9 shows a typical write transaction. The 4KEc core
drives address and control information onto the
EB_A[35:2]andEB_BE[3:0]signals on the rising edge of
clock 2. As in the single read cycle, these signals remain
active until the clock edge after tB8_ARdysignal is
sampled asserted. The 4KEc core assertEBhéNrite

signal to indicate that a valid write cycle is on the bus and es.Avaid ____ |

EB_AValidto indicate that valid address is on the bus.

The 4KEc core drives write data o3 _WData[31:0]in

the same clock as the address and continues to drive data

until the clock edge after tHeB_ WDRdysignal is sampled

asserted. If a bus error occurs during a write operation,
external logic asserts theB_WBETrrsignal one clock after

assertingEB_ WDRdy

Clock # 1 2 3 4 5 6 7 8

o L b e iy
o ey LI ‘f\\ ’

e8 sz [/1/IX_ e [T T
s wie ////]/ [T TTTT
e8 sez0] /777X vai (1R 7T T T TT
EB_AValid _/

E87WDaia[3l_,[m Data is Driven um\/ia;zckafrer EB_WDRa /m //// //// ////
e WDRdy /—t [Driven by system logic

EB_WBErr /—‘(

Figure 9 Single Write Transaction Timing Diagram

Burst Read

The 4KEc core is capable of generating burst transaction

Clock # 1

G I I I I I
eary | |\ | \Oll/ '\V/ \
e8 a5 [/]]/X 2o | _aaz Af3\\ was X[/11T
s mse 77777 id \ /11T
£8_BE0] /11T
EBBust | /
£B_BFirst /T \

/ en by system logic
es_Roaas1.0) // 7/]/ 1]/ K baerX Geta2{ /] /111711
grve |/ W}Am@[[/ N
EB_RBE VAR/ARN \
eswie ///], [T

Figure 10 Burst Read Transaction Timing Diagram

Figure 10 shows an example of a burst read transaction.
Burst read transactions initiated by the 4KEc core always
contain four data transfers in a sequence determined by the
critical word (the address that caused the miss) and
EB_SBlockIn addition, the data requested is always a 16-
byte aligned block.

The order of words within this 16-byte block varies
depending on which of the words in the block is being
requested by the execution unit and the ordering protocol
selected. The burst always starts with the word requested
by the execution unit and proceeds in either an ascending
or descending address order, wrapping when the block
boundary is reached. Table 14 and Table 15 show the
sequence of address bits 2 and 3.

Table 14 Sequential Ordering Protocols

on the bus. A burst transaction is used to transfer multiple

data items in one transaction.

Starting Address Address Progression
EB_A[3:2] of EB_A[3:2]

i 00 00, 01, 10, 11

01 01, 10, 11, 00

10 10, 11, 00, 01

11 11, 00, 01, 10

40

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Table 15 Sub-Block Ordering Protocols Cook# L 2 8 4 8 6 7 8
Starting Address Address Progression FB-clk l_l—l_l—’_l—ﬂ_l—l_l—’_l—’_l—’_l—l_l—
FB AR orEB A3 ey _ [N N [\ [NQITITITITITT]
00 00, 01, 10, 11 EB _A35:2] f{f{ W Adrt [adz X adr3 X AdrX, | // /// /// ////
01 01, 00, 11, 10
es Be30l ////1/ \\riiiiiiiiia
10 10, 11, 00, 01
eswie ////]/ [N
11 11, 10, 01, OO
EB_Burst / \
The 4KEc core drives address and control information onto ez srist N\
theEB_A[35:2]andEB_BE[3:0]signals on the rising edge] » Drkenty
of clock 2. As in the single read cycle, these signals remain £8-8Last \ Syyrem logie
active until the clock edge after te8_ARdysignal is £B Avalid / \ /
sampled asserted. The 4KEc core continues to drive
EB_Avalidas long as a valid address is on the bus. e8_woaasty [//X__owat X owez [X a3\ oA X//T]]]]]]
S S)
TheEB_Instrsignal is asserted if the burst read is for an £8.worsy /\nay// 7 X/ 7777
instruction fetch. Th&B_Burstsignal is asserted while the
address is on the bus to indicate that the current address is™ " AR ARV/ARV/AR

part of a burst transaction. The 4KEc core asserts the
EB_BFirstsignal in the same clock as the first address is
driven and th&B_BLassignal in the same clock as the last
address to indicate the start and end of a burst cycle.

Figure 11 Burst Write Transaction Timing Diagram

The 4KEc core drives address and control information onto
theEB_A[35:2]andEB_BE][3:0]signals on the rising edge
of clock 2. As in the single read cycle, these signals remain
active until the clock edge after te8_ARdysignal is
sampled asserted. The 4KEc core continues to drive
EB_AValidas long as a valid address is on the bus.

The 4KEc core first samples t&8 RData[31:0]signals
two clocks afteEB_ARDyis sampled asserted. External
logic assert&£B_RdValo indicate that valid data is on the
bus. The 4KEc core latches data internally whenever

EB_RdVals sampled asserted. The 4KEc core asserts tb@®_ Write EB_Burst and

L I EB_AValidsignals during the time the address is driven.
Note that on the rising edge of clocks 3 and 6 in Figure 10’EB_Writeindicates that a write operation is in progress.

theEB._RdVaIS|gnaI is sampled .deasserted, causing \.Nalt The assertion dEB_Burstindicates that the current

states in the data return. There is also an address wait state . e .
. .. —operation is a bursEB_AValidindicates that valid address

caused bEB_ARdypeing sampled deasserted on the rising is on the bus

edge of clock 4. Note that the core holds address 3 on the ‘

EB_Abus for an extra clock becau;e of t.hls walt state. The 4KEc core asserts tB®_BFirstsignal in the same

External logic asserts theB_RBErrsignal in the same S -

clock as data if a bus error occurs during that data transfeFlOCk as address 1 is driven to indicate the start of a burst

cycle. In the clock that the last address is driven, the 4KEc

core assertEB_BLastto indicate the end of the burst
Burst Write transaction.

Burst write transactions are used to empty one of the WriteIn Figure 11, the first data word (Datal) is driven in clocks

buffers. A burst write transaction is only performed if the i and 3 dlije to;hE_B__WD(Ij?d)si?nlal iezing sampled .
write buffer contains 16 bytes of data associated with the easserted at the rising edge of clock 2, causing a wait state.

same aligned memory block, otherwise individual write VYheknEBEWEESyS sampled asdser;eo(ljo_n_the rri1$ing edgg of
transactions are performed. Figure 11 shows a timing clock 3, the ¢ core responds by driving the secon

diagram of a burst write transaction. Unlike the read burst,Wom| (Data2).
a write burst always begins wiB_A[3:2] equal to 00b.

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01 41

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

External logic drives th&B_WBErrsignal one clock after
the corresponding assertiontEeB_WDRdyif a bus error
has occurred as shown by the arrows in Figure 11.

42 MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Revision History Please note: Limitations on the authoring tools make it
difficult to place change bars on changes to figures. Change

In the left hand page margins of this document you may Pars onfigure titles are used to denote a potential change in

find vertical change bars to note the location of significant the figure itself. Certain parts of this document (Instruction

changes to this document since its last release. Significaf€t descriptions, EJTAG register definitions) are references

changes are defined as those which you should take note ¢@ Architecture specifications, and the change bars within

as you use the MIPS IP. Changes to correct grammar, these sections indicate alterations since the previous

spelling errors or similar may or may not be noted with version of the relevant Architecture document.

change bars. Change bars will be removed for changes

which are more than one revision old.

Revision Date Description

» Added this revision history table.

02.00 November 8, 2002 | « Various updates to describe new MIPS32 Release 2 capabilities, included in version
3.0 or higher core releases.

+ Added SYNCI instn to table. Added assembler idioms such as b, bal.
» Corrected description of EntryLoO register in Table 2.

» Externalized CorExtend interface.

02.01 September 1, 2004 | * Added CEU (CorExtend Unusable) exception type.

« Exception table referred to EB_NMI instead of SI_NMI.
» Added option for 32 entry JTLB.

« Added table summarizing key build time configuration options.

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01 43

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

Copyright © 2001,2002,2004 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying,
reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS
Technologies or an authorized third party is strictly prohibited. At a minimum, this information is protected under unf:
competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is
to use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions.
NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, IN

MIPS Technologies reserves the right to change the information contained in this document to improve function, desi
otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this information, o
error or omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not
to the implied warranties of merchantability or fithess for a particular purpose, are excluded. Except as expressly prc
any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document ¢
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in t
document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly orimd
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supg
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this d
the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any relat
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of |
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer ¢
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulatior
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The ug
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or ¢
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS |, MIPS I, MIPS 111, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPS
MIPS Technologies logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 2
24K, 24Kc, 24Kf, R3000, R4000, R5000, ASMACRO, ATLAS, At The Core Of The User Experience., BusBridge, CorE
CoreFPGA, CorelV, EC, FastMIPS, JALGO, MALTA, MDMX, MGB, MIPS RISC CERTIFIED POWER logo, PDTrace
Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or registered trac
of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.11, Built with tags: 2B

44

MIPS32® 4KEc™ Processor Core Datasheet, Revision 02.01

Copyright © 2001,2002,2004 MIPS Technologies Inc. All rights reserved.

	Features
	Architecture Overview
	Pipeline Flow
	4KEc Core Required Logic Blocks
	Execution Unit
	Multiply/Divide Unit (MDU)
	System Control Coprocessor (CP0)
	Interrupt Handling
	GPR Shadow Registers

	Modes of Operation
	Memory Management Unit (MMU)
	Translation Lookaside Buffer (TLB)
	Joint TLB (JTLB)
	Instruction TLB (ITLB)
	Data TLB (DTLB)
	Virtual-to-Physical Address Translation
	Hits, Misses, and Multiple Matches
	TLB Tag and Data Formats
	Page Sizes and Replacement Algorithm

	Cache Controllers
	Bus Interface (BIU)
	Merge Control
	SimpleBE Mode

	Hardware Reset
	Power Management
	Register-Controlled Power Management
	Instruction-Controlled Power Management
	Local clock gating

	4KEc Core Optional Logic Blocks
	Instruction Cache
	Data Cache
	Cache Memory Configuration
	Cache Protocols
	Scratchpad RAM
	MIPS16e Application Specific Extension
	Coprocessor 2 Interface
	CorExtend User Defined Instruction Extensions
	EJTAG Debug Support
	Debug Registers
	EJTAG Hardware Breakpoints
	MIPS Trace

	Testability
	Internal Scan
	Memory BIST
	Integrated Memory BIST
	User-specified Memory BIST

	Build-Time Configuration Options
	Instruction Set
	External Interface Signals
	EC Interface Transactions
	Single Read
	Single Write
	Burst Read
	Burst Write

	Revision History

