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• Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but 

there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire 

or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate 

measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against 

any malfunction or mishap. 

 

 

 

• These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation 

product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any 

other rights, belonging to Renesas Technology Corporation or a third party. 

• Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, 

originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained 

in these materials. 

• All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents 

information on products at the time of publication of these materials, and are subject to change by Renesas Technology 

Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers 

contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest 

product information before purchasing a product listed herein. 

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation 

assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. 

Please also pay attention to information published by Renesas Technology Corporation by various means, including the 

Renesas Technology Corporation Semiconductor home page (http://www.renesas.com). 

• When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, 

and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability 

of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or 

other loss resulting from the information contained herein. 

• Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is 

used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an 

authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for 

any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea 

repeater use. 

• The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these 

materials. 

• If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a 

license from the Japanese government and cannot be imported into a country other than the approved destination. 

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of 

destination is prohibited. 

• Please contact Renesas Technology Corporation for further details on these materials or the products contained 

therein. 

Keep safety first in your circuit designs! 

Notes regarding these materials 
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1 Overview of Manual  

1.1 Overview 

This document is the instruction manual for the RENESAS DIGITAL ASSP M66591 USB Sample Firmware 

(hereinafter referred to as USB-FW) that is a sample program for control of USB interface using the M66591. 

 

1.2 Related Documents 

[1] M66591 Datasheet 

 [http://www.renesas.com/eng/products/mpumcu/specific/usb_mcu/index.html] 

[2] Basic Information of USB (in Japanese) 

 [http://www.renesas.com/jpn/products/mpumcu/specific/usb_mcu/outline7.html] 

[3] USB Specification Version 1.1 (Chapter 8 Protocol Layer) 

 [http://www.renesas.com/jpn/products/mpumcu/specific/usb_mcu/outline7.html] 

[4] USB Specification Version 1.1 (Chapter 9 Device Framework) 

 [http://www.renesas.com/jpn/products/mpumcu/specific/usb_mcu/outline7.html] 

[5] Universal Serial Bus Revision 2.0 specification 

 [http://www.usb.org/developers/docs] 

[6] USB Application Note 

 [http://www.renesas.com/eng/products/mpumcu/specific/usb_mcu/index.html] 
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2 Overview 

2.1 Features of USB-FW 

The USB-FW has the following features: 

� The control MCU and peripheral are not specified for the configuration (users can define them individually). 

� The USB-FW can verify the connection using USBCommandVerifier.exe (hereinafter referred to as USBCV). 

(The USBCV can be downloaded from http://www.usb.org/developers/tools) 

� A sample program for bulk (IN/OUT)/interrupt (IN) data communication is available. 

� Files are divided according to function (refer to file configuration list). 

� The user program has no need to access to the M66591 register directly. 

 

2.2 Layer 

The USB-FW consists of the following layers: 
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2.3 File Configuration List 

File Name Overview 

changeep.c User application processing 

classvender.c Class/vender request processing 

controlrw.c Control read/write processing 

dataio.c Data read/write processing 

datatbl.h User buffer definition for transmit/receive 

def591.h Register address/bit definition for the M66951 

def_ep.h Data definition for PIPE setting 

defusr.h User definition 

descrip.h Descriptor data definition 

extern.h External reference definition 

global.c Global variable processing 

intrn.c INTR,INTN,BEMP interrupt processing 

usbsig.c USB signal processing 

libassp.c USB ASSP register operation processing  

Lib591.c USB ASSP register operation processing 

Libassp.h USB ASSP register operation processing definition 

Macusr.h User macro definition 

main.c Dummy user application 

Status.c Internal status operation processing 

Stdreqget.c Standard request processing 

Stdreqset.c Standard request processing 

Typedef.h Variable type definition 

Usbint.c USB interrupt processing 

Version.h Version information 

 

2.4 Development Purpose 

The USB-FW is developed for the following purposes: 

� To facilitate the development of the USB communication programs using the M66591. 

� To supplement the explanation of the M66591 control with concrete examples. 

 

2.5 Service Overview 

The USB-FW provides the following services for the upper layer (user program layer): 

� M66591 initialization (Reset, oscillation control, PIPE initialization, etc.) 

� Request response (Standard request [USB Revision 2.0 specification]) 

� Data transfer (Bulk and interrupt transfer: CPU access) 

� Status notification (Status notification function) 

� Request notification (Request notification function) 
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2.6 Global Flow 

The USB-FW configures interrupt programs consisting of control functions that transmit/receive USB data. 

The interrupt event is occurred by external interrupt to the control MCU from the M66591. 

The external interrupt program identifies the factor of interrupt and executes relevant processing. 

(1) Special signal processing 

Vbus interrupt, resume interrupt, SOF detect interrupt*1 and device state transition interrupt  

(*1: The USB-FW does not includes processing. The processing should be created if needed.) 

(2) Control transfer processing 

Control transfer stage transition interrupt and device state transition interrupt 

(3) PIPE transfer processing 

Buffer empty/size error interrupt, buffer not ready interrupt and buffer ready interrupt 

 

Since the USB-FW executes USB control processing in an interrupt routine, a permanent loop occurs in the main 

function after the main function initializes the control MCU and registers related to the M66591. 

The global flow diagram of the USB-FW is as follows. 

 

Initialization 

USB operation enable 

Main loop 

Dummy user application 

USB interrupt processing

Connector connection/ 
disconnection processing 

Interrupt factor

checking 

Special signal 
processing 

PIPE1~6 transfer 
processing 

Control transfer 
processing 
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3 Operation 

3.1 Overview 

The USB-FW is enabled to communicate and execute the USBCV program, when the control MCU and peripheral 

are initialized (main.c), and the user definition information file (defusr.h) and user definition macro file (macusr.h) 

are modified. 

 

3.2 Modification of USB-FW 

The following program file and header file program have to be modified in order to activate the USB-FW and execute 

the USBCV. 

(1) The following functions in the main.c have to be modified. 

� Initialize the control MCU (CPUInit function) 

� Initialize the peripheral (PeripheralInit function) 

� Enable the control MCU interrupt (enableINT function) 

� Adjust time in functions for waiting for specified time (delay_1ms function and delay_10us function) 

The specified time is waited by loop processing. Adjust the number of loops to wait for the specified time 

according to user’s system. 

(2) The following files have to be customized by users. 

� Specify vender ID and product ID in the descrip.h. 

VenderID and ProductID 

(For details, refer to "6. User definition") 

� Specify endian, I/O voltage, register base address, far area, oscillation constant, and interrupt function in the 

defusr.h. 

FIFO_ENDIAN, VIF_SET, USB_BASE, REGP, XIN and usbint 

(For details, refer to "6. User definition") 

(3) The following processings have to be executed when building 

� Specify section area 

� Create start up routine 

(4) Others 

� Special signal processing (Not need at the firmware operation check (execute the USBCV program) level) 
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3.3 Notes 

The USB-FW is a general-purpose firmware not specifying the control MCU and peripheral. It is applicable only to 

standard requests. It executes data communications using temporary interface between the USB-FW and dummy 

user application. 

Therefore, the USB-FW have to be customized the following cases by users: 

� When class specification and response to requests unique to a vendor are required 

� When the communication speed and program capacity are taken into consideration 

� When the user interface is set separately 

* The USB-FW does not guarantee the USB communication operations. When applying it to user’s system, users 

must verify its operations, and confirm its connection on various host controllers. 
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4 Data Transfer 

4.1 Overview 

The USB-FW is capable of simple data communications between the host PC and the device if users prepare the 

USB driver on the host PC and a data transfer application. (For the device configuration of the USB-FW, refer to the 

descriptor definition section.) 

Simple data communications applicable to user’s system (system on the host PC) can be realized by modifying 

information necessary for the device configuration (descriptor definition (descrip.h) and PIPE definition (def_ep.h)) 

and the dummy user application (main.c). 

Since data communication is based on the functional specifications unique to the user, the user should individually 

modify the transferring method, requests for communication start and end, and buffer configuration. 

 

4.2 Basic Specification of USB-FW 

� The USB-FW realizes data transfer between the user buffer and the FIFO port register through CPU access. 

(The data flow is as follows.) 

� The user buffer has secured the 512-byte area to all PIPEs. 

(Secure the user buffer area larger than the FIFO buffer area.) 

� Availability to transfer data larger than PIPE FIFO buffer size by modifying size of the user buffer. 

� The transmit data to the host use the fixed data each PIPE. 

� The user buffer address notification function (DI_Start/DO_Start) is a function common to CPU/DMA accesses. 

� For data transmit/receive, a buffer ready interrupt is used. The buffer ready interrupt of each PIPE is enabled 

when data transmit/receive is started. 
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4.3 Data Transmit (IN Token) Operation 

The USB-FW transmits the data (support IN token) to the host PC as follows: 

(1) Check enable/disable of the user buffer use. (Enable when the Buffer_Write_Data_Flag is set to the 

DATA_NONE.) 

When the user buffer is disabled, no processing is executed, and processing for another PIPE is executed. 

(2) Check whether there are the transmit data or not. (When the returned value to the Create_In_Data function is 

other than the DATA_NONE, there are the transmit data.) 

When there are not the transmit data, no processing is executed, and processing for another PIPE is executed. 

(3) The USB-FW sets the user buffer address and the transmit byte count (dtcnt), disables the user buffer use (the 

Buffer_Write_Data_Flag is set to the DATA_WAIT), and enables the buffer ready interrupt (DI_Start function). 

(4) Write the data in the user buffer to the FIFO port register when the buffer ready interrupt has been occurred. 

� When transmit byte count (dtcnt) > FIFO buffer size 

Write the data equal to the FIFO buffer size, and subtract the FIFO buffer size from the transmit byte 

count. (dtcnt = dtcnt - FIFO buffer size). 

� When transmit byte count (dtcnt) ≤ FIFO buffer size 

Write the data equal to the transmit byte count, disable the buffer ready interrupt, and enable the user 

buffer use (the Buffer_Write_Data_Flag is set to the DATA_NONE). 

 

Control flow: 
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4.4 Data Receive (IN Token) Operation 

The USB-FW receives the data (support OUT token) from the host PC as follows: 

(1) Check enable/disable of the user buffer use. (Enable when the Buffer_Read_Data_Flag is set to the 

DATA_NONE.) 

(2)-1 Check enable/disable of the user buffer read when the user buffer is disabled. (Enable when the 

Buffer_Read_Data_Flag is set to the DATA_OK.)  

Enable the user buffer use when the user buffer is enabled to read (the Buffer_Read_Data_Flag is set to the 

DATA_NONE).  

When the user buffer is disabled to read, no processing is executed, and processing for another PIPE is executed. 

(2)-2 When the user buffer is enabled, the USB-FW sets the user buffer address and the receive byte count (dtcnt), 

disables the user buffer use (the Buffer_Read_Data_Flag is set to DATA_WAIT), and enables the buffer ready 

interrupt (DO_Start function). 

(3) Read the data from the FIFO port register and write the data to the user buffer when the buffer ready interrupt 

has been occurred. 

� When receive byte count (dtcnt) > FIFO buffer size 

Read the data equal to the FIFO buffer size, and subtract the FIFO buffer size from the receive byte count. 

(dtcnt = dtcnt - FIFO buffer size). 

� When receive byte count (dtcnt) ≤ FIFO buffer size 

Read the data equal to the receive byte count, disable the buffer ready interrupt, and enable the user buffer 

use (the Buffer_Read_Data_Flag is set to the DATA_OK). 

 

Control flow: 
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4.5 PIPE Setting for Data Transfer 

The USB communication has to modify the PIPE setting for data communications by the request of the 

Set_Configuration/Set_Interface etc. 

When receiving the above request, the USB-FW retrieves the PIPE table index number to be used from the 

descriptor table in the configuration or interface to be modified, and automatically sets the PIPE configuration 

register according to the PIPE definitions. 

(1) PIPE setting 

The USB-FW calls the Esrch function using the configuration number, interface number and alternate setting 

as arguments. Then, it calls the resetEP function using the configuration number as arguments. 

void Esrch  (Configuration number, interface number, alternate setting); 

void resetEP (Configuration number); 

The Esrch function retrieves and sets the PIPE definition index numbers of all PIPEs to be used in the interface 

of the specified configuration. 

The resetEP re-sets the PIPE configuration registers for all PIPEs retrieved in the Esrch. When modifying 

PIPE specifications, it is necessary to disable existing PIPE communications to avoid invalid data input or input 

errors during modification. Therefore, the resetEP disables relevant PIPE interrupt. 

(2) Descriptor table 

The USB-FW uses temporary descriptor definitions. Create descriptor definitions unique to user’s system 

(descrip.h) according to the windows driver and applications on the host. 

Modify PIPE definition (def_ep.h) simultaneously when descriptor definition is modified. Also, change the 

dummy user application (Change_Config/Change_Interface function) if it is required. 

* Define the PIPE information in the same order as descriptor definition and PIPE definition. (For details, 

refer to PIPE definition section.) 

(3) Change_Config / Change_Interface function 

These functions are called by the USB-FW when the Set_Configuration or Set_Interface request is received. 

Add the processing by the USB-FW if user applications require some processing. 

 

4.6 Notes when Modifying 

� The user buffer should be larger than max. packet (FIFO buffer when setting to continuous transmit/receive) size. 

� A dummy area is provided in each user buffer to facilitate verification of communication. 

� Modify PIPE definition (def_ep.h) simultaneously when descriptor definition (descrip.h) is modified. 

� When the usage (or configuration) of any user buffer is modified, it may be required to modify library functions. 
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4.7 User Buffer Specification 

� An area is secured to count the accesses to the user buffers. 

� The user buffers define different default data depending on PIPE. 

 

typedef struct { 

    U16 size;     /* Buffer size */ 

    U16 count;     /* Buffer access counter */ 

    U8 Dummy[12];     /* Data area position adjustment */ 

    U8 buff[EP1_DATA_SIZE];    /* Data buffer area */ 

} ep_buff1; 

 

ep_buff1 EP_Buff1 = { 

    EP1_DATA_SIZE,    0,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 

    0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F, 

    0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F, 

    0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F, 

                        : 

                        : 

 

ep_buff2 EP_Buff2 = { 

    EP2_DATA_SIZE,    0,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02, 

    0x0F,0x0E,0x0D,0x0C,0x0B,0x0A,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x01,0xFF, 

    0x1F,0x1E,0x1D,0x1C,0x1B,0x1A,0x19,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10, 

    0x2F,0x2E,0x2D,0x2C,0x2B,0x2A,0x29,0x28,0x27,0x26,0x25,0x24,0x23,0x22,0x21,0x20, 

                        : 

                        : 

                        : 

                        : 

                        : 

ep_buff6 EP_Buff6 = { 

    EP6_DATA_SIZE,    0,0x06,0x06,0x06,0x06,0x06,0x06,0x06,0x06,0x06,0x06,0x06,0x06, 

    0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0, 

    0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1, 

    0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2, 
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5 Class/Vender Request 

5.1 Overview 

The USB-FW can respond to class/vender requests if the users prepare the windows driver and applications on the 

host PC, and a user firmware on the device side. As the basic structure of data communication on the data stage, the 

USB-FW provides only the entries for the functions designed with the same structure as that of data communication 

on each PIPE. 

 

5.2 Basic Specification 

� The following functions are available as user buffer address notification functions: 

CR_Start (Control read user buffer address notification function) 

CW_Start (Control write user buffer address notification function) 

� The following functions are available as data read/write functions: 

Control_Read (Control read data write function) 

Control_Write (Control write data read function) 

� Secure the user buffer area larger than the data capacity that transmit/receive on the data stage: 

(The user buffer size is required larger than the data capacity transferred at one control transfer.) 

 

5.3 Detailed Specification 

� A user buffer is provided between the USB-FW and user firmware, and the USB-FW realizes data transfer 

between the user buffer and the FIFO port register through CPU access. 

-> Use the CR_Start or the CW_Start function in the user application. 

� The transfer direction of the data stage is judged using the INTR_int or the BEMP_int function. 

� The data are continuously transferred using the interrupt when transmitting/receiving. 

-> The data are continuously transferred by the Control_Read/Control_Write function. 

� The transmit data to the host (applicable to the Control_Read) should be created by the user firmware. 

Proposal 1: Creation according to request in interrupt (same as standard request) 

Proposal 2: Creation by application (notification of receipt to user application from interrupt) 

� The receive data from the host (applicable to the Control_Write) should be analyzed by the user firmware. 

Proposal 1: Creation according to request in interrupt (same as standard request) 

Proposal 2: Creation by application (notification of receipt to user application from interrupt) 

 

5.4 Example of Control Read (IN Direction) User Firmware Interface 

The example of the class/vender request created by the user firmware is as follows: 

(1) User calls the CR_Start function in the control read data stage (ClassTrans1 function). 

(2) The buffer empty/size over interrupt is occurred (BEMP_int function). 

The transmit data transfers to the FIFO buffer by the Control_Read function. 

* These are examples for creating the class/vender request. Actually, create the request according to user’s 

specifications. 
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Transmit flow: 

Data stage 

Return 

CR_Start 

BEMP_int

Return

Control_Read 

 

Notes: 

• Call the transmit start notification (CR_Start function) after the creation of the transmit data has completed. 

• Notify the user buffer address and the data size in the transmit start notification (CR_Start function). 

• Secure the user buffer capacity larger than the data size (wLength) transmitted in the control read data stage. 

• Notify the completion of control transfer (Control_End function) at the control read status stage transition of 

the USB interrupt function. 

• The user firmware must store the request type (control read setup stage information) to create the transmit 

data. 

 

5.5 Example of Control Write (OUT Direction) User Firmware Interface 

The example of the class/vender request created by the user firmware is as follows: 

(1) User calls the CW_Start function in the control write data stage (ClassTrans2 function). 

(2) The buffer ready interrupt is occurred when the data has been received from the host PC (INTR_int function). 

The receive data transfers to the user buffer by the Control_Write function. 

(3) The receive data in the user buffer is processed in the control write status stage (ClassTrans5 function). 

* These are examples for creating the class/vender request. Actually, create the request according to user’s 

specifications. 

 

Receive flow: 
 

CW_Start 

Data stage

Return

Control_Write 

Buffer ready

Return

Receive data 
processing 

Status stage 

Return 
 

Notes: 

• Notify the buffer address and the data size in the receive start notification (CW_Start function). 

• Secure the user buffer capacity larger than the received data size (wLength) in the control write data stage. 

• Notify the completion control transfer to the USB-FW after the receive data analysis has completed (using 

Control_End function). 
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6 User Definition 

6.1 Overview 

Since the USB-FW is described as a general-purpose firmware, it is possible to create an execution file unique to the 

user by rewriting the user definition information file. 

Change the following eight items according to user’s system. 

* Other definitions may be required depending on control MCU. 

(1) Vender ID 

(2) Product ID 

(3) FIFO endian 

(4) I/O power supply 

(5) Address of the M66591 

(6) Pointer type for address of the M66591  

(7) Oscillation frequency of the oscillator connected to the M66591 

(8) Interrupt vector 

 

6.1.1 Vender ID (descrip.h) 

Specify the vender ID according to user’s system. 

Example) When 0x1234 is set 

#define  VenderID  0x1234 

 

6.1.2 Product ID (descrip.h) 

Specify the product ID according to user’s system. 

Example) When 0x5678 is set 

#define  ProductID  0x5678 

 

6.1.3 FIFO endian (defusr.h) 

Specify the endian for access to the FIFO port of the M66591. 

Example) When the little endian is set 

#define  FIFO_ENDIAN  LITTLE_ENDIAN 

 

6.1.4 I/O power supply (defusr.h) 

Specify the voltage of the I/O pin in the M66591. 

Example) When 3.3V is set 

#define  VIF_SET  VIF3 

 

6.1.5 Address of the M66591 (defusr.h) 

Specify the standard address for access to the M66591. 

All registers are specified the address based on offset from the standard address. 

Example) When 0x8000 address is set 

#define  USB_BASE  (0x8000) 
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6.1.6 Pointer type for address of the M66591 (defusr.h) 

Specify the pointer type for access to the M66591. 

Each register on the M66591 is cast in the REGP type to cope with an MCU requiring declaration of the near/far. 

Comment out one of them according to the type of control MCU. 

Example) When the M66591 is allocated to near area with an MCU requiring declaration of the near/far 

typedef  volatile U16  REGP; 

/* typedef  volatile far U16  REGP; */ 

 

6.1.7 Oscillation frequency of the oscillator connected to the M66591 (defusr.h) 

Select the oscillation frequency of the oscillator to be connected to the M66591 from three oscillation types. 

Example) When 24MHz oscillator is used 

#define XIN Xtal24 

 

6.1.8 Interrupt vector (defusr.h) 

For an MCU requiring declaration of interrupt processing function, it is necessary to declare interrupt for USB 

communication provided by the USB-FW. Cancel the comment as necessary. When the declaration is not the 

#pragma, change the declaration. 

Example) When the pragma declaration is required for interrupt processing function (usbint) 

#pragma INTERRUPT  usbint 
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7 User Definition Macro (macusr.h) 

7.1 Overview 

The M66591 has been designed compliant with the USB Revision 2.0 specification. It must access each register in 

little endian. The USB-FW is described as a general-purpose firmware on the assumption that the endian of control 

MCU may differ from that of the M66591. Since the register access and FIFO register access are described as macros, 

it is possible to create an execution file unique to the user by rewriting the user definition macro header file. Change 

the macro for access to the register and FIFO register according to user’s system. 

The register access macro consists of the following nine macros classified into four kinds: 

(1) Register and FIFO data register read/write macro 

(2) Register bit set/clear/modify macro 

(3) Status register bit clear macro 

(4) Status register bit set macro 

 

7.1.1 Register and FIFO data register read/write macro 

These macros are used for reading and writing data in the register and the FIFO data register. 

The control MCU and the M66591 must be connected so that DMA transfer between memory and FIFO data register 

can be executed normally. Refer “6.1.3 FIFO endian (defusr.h)” to set FIFO endian. 

 

#define USBRD( r, v )  do{( v ) = ( r ); } while(0) 

#define USBWR( r, v )  do{( r ) = ( v ); } while(0) 

#define USBRD_FF( r, v )  do{( v ) = ( r ); } while(0) 

#define USBWR_FF( r, v )  do{( r ) = ( v ); } while(0) 

* Connect the control MCU, memory and the M66591 in sufficient consideration of the system configuration. 
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7.1.2 Register bit set/clear/modify macro 

These macros are used for setting, clearing and modifying register bits. 

Each macro is described in accordance with RMW (Read Modify Write) command and uses the above-mentioned 

macro for reading and writing registers and FIFO data register. 

* It is not necessary to change these macros unique to the user.  

* Do not clear the bit of the status register by this bit clear macro. The bit of the status register is cleared using 

the status register bit clear macro. 

 

/* set bit(s) of USB register   */ 

/* r : USB register               */ 

/* v : value to set               */ 

#define  USB_SET_PAT( r, v )      do{ register U16  tmp; \ 

                                               USBRD( r, tmp ); \ 

                                               tmp |= (v); \ 

                                               USBWR( r, tmp ); }while(0) 

 

/* reset bit(s) of USB register   */ 

/* r : USB register               */ 

/* m : bit pattern to reset       */ 

#define  USB_CLR_PAT( r, m )      do{ register U16  tmp; \ 

                                               USBRD( r, tmp ); \ 

                                               tmp &= (~(m)); \ 

                                               USBWR( r, tmp ); }while(0) 

 

/* modify bit(s) of USB register */ 

/* r : USB register          */ 

/* v : value to set               */ 

/* m : bit pattern to modify      */ 

#define  USB_MDF_PAT( r, v, m )   do{ register U16  tmp; \ 

                                               USBRD( r, tmp ); \ 

                                               tmp &= (~(m)); \ 

                                               tmp |= v; \ 

                                               USBWR( r, tmp ); }while(0) 

 

7.1.3 Status register bit clear macro 

This macro is used for clearing the status register bit. 

This macro is described in accordance with RMW (Read Modify Write) command and uses the above-mentioned 

macro for reading and writing registers and FIFO data register. This macro avoids clearing the status that has 

changed during execution of a command in accordance with RMW command. 

* It is not necessary to change these macros unique to the user. 

* This macro is used only for the status register with invalid writing “1”. 

 

/* reset bit(s) of USB status */ 

/* r : USB register          */ 

/* m : bit pattern to reset   */ 

#define  USB_CLR_STS( r, m )  do{ register U16  tmp; \ 

                                  tmp = 0; \ 

                                  tmp |= (~(m)); \ 

                                  USBWR( r, tmp ); }while(0) 
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7.1.4 Status register bit set macro 

This macro is used for setting the status register bit. 

This macro uses the above-mentioned macro for writing register. The macro avoids clearing the status that has 

changed during execution of a command by writing “1” to all bits. 

(Use this macro when writing “1” to the bit by the VBUSINT bit clear etc. in the internal clock disable state.)  

* It is not necessary to change these macros unique to the user. 

* This macro uses only for the status register with invalid writing “1”. 

 
/* set bit(s) of USB status */ 

/* r : USB register  */ 

/* m : dummy   */ 

#define  USB_SET_STS( r, m )  USBWR( r, 0xffff ) 
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8 PIPE Definition (def_ep.h) 

8.1 Overview 

The M66591 sets the conditions for PIPEs by the configuration register. The USB-FW is described as a 

general-purpose firmware on the assumption that PIPE settings will be changed as the result of modification of 

configuration and alternative caused by standard requests, such as Set_Configuration and Set_Interface. It is 

possible to create an execution file unique to the user by configuring PIPE information (usage) in each state on the 

header file as a data table and rewriting the PIPE definition header file (def_ep.h). 

Two parameters for each PIPE must be set; full-speed (Eptbl_Full_n) and hi-speed (Eptbl_Hi_n). 

Change the PIPE definition according to user’s system.  

* Change descriptor definition (descrip.h) according to PIPE definition when PIPE definition is changed. 

The default control PIPE definition consists of the following two items (U16 x 2): 

(1) C_FIFO Port Control Register 0 (0x28 address) 

(2) Default Control PIPE Configuration Register 1 (0x82 address) 

 

The PIPE 1 to 6 definitions consist of the following two items (U16 x 2): 

(1) C_FIFO Port Control Register 0 (0x28 address) 

(2) PIPE Configuration Window Register 0 (0x90 address) 

 

8.2 Default Control PIPE Definition 

The default control PIPE definition consists of the table.  

The default control PIPE information table described as a sample in the USB-FW is the following: 

Example) 

const U16 DCPtbl[] = { 

   /* C_FIFOControlRegister 0 (0x28) */ 

       RCNT | MBW_16,                                               <- Definition item 1 
   /* Default Control PIPE Configuration Register 1 (0x82) */ 

       CNTMD                                                        <- Definition item 2 

 

8.2.1 Default control PIPE definition item 1 

This item specifies the value for the C_FIFO Port Control Register 0. 

Set as follows: 

� Read count mode : Specify RCNT when the ODLN register value is counted down. 

Specify OFF when the ODLN register value is not counted down. 

� FIFO access bit width  : Specify MBW_8 when setting to 8-bit width. 

Specify MBW_16 when setting to 16-bit width. 

Example) when the read count mode and the 16-bit width are set 

RCNT | MBW_16,   
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8.2.2 Default control PIPE definition item 2 

This item specifies the value for the Default Control PIPE Configuration Register 1. 

Set as follows:   

� Continuous transmit/receive mode  : Specify CNTMD when setting to continuous transmit/receive mode. 

Specify OFF when setting to non-continuous transmit/receive mode. 

Example) when the continuous transmit/receive mode is set 

CNTMD 

* For the specification method of max packet size of the default control PIPE, refer to "9. Descriptor Definition 

(descrip.h)". 

 

8.3 PIPE 1 to 6 Definitions 

Each PIPE definition consists of respective table of each configuration same as the descriptor definitions. The table 

is described in order of related interfaces and alternate settings. The PIPE definition described as a sample in the 

USB-FW is the following. 

Each PIPE definition item is described on the following pages. 

Example) 

/* Configuration 1 */ 

const U16  EPtbl_Full_1[] = {                                     <- for full-speed 
    /* Interface 1-0-0 */ 

        /* Endpoint 1-0-0-0 */ 

 

            /* (EP1 BULK) Single/DoubleBuffer CONT/notCONT IN/OUT */ 

            /* C_FIFO Port Control Register 0 (0x28) */ 

                PIPE1,                                            <- PIPE definition 1 
            /* PIPE Configuration Window Register (0x90) */ 

                DBLB | CNTMD | DIR_IN,                            <- PIPE definition 2 
 

: 

: 

: 

}; 

 

const U16  EPtbl_Hi_1[] = {                                       <- for hi-speed 
    /* Interface 1-0-0 */ 

        /* Endpoint 1-0-0-0 */ 

 

            /* (EP1 BULK notCONT) Single/DoubleBuffer IN/OUT */ 

            /* C_FIFO Port Control Register 0 (0x28) */ 

                PIPE1, 

            /* PIPE Configuration Window Register (0x90) */ 

                DBLB | DIR_IN, 

 

: 

: 

: 

}; 
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8.3.1 PIPE definition item 1 

This item specifies the value for the C_FIFO Port Control Register 0. 

Set as follows: 

� CPU access PIPE: Specify CPU access PIPE (PIPE1 to PIPE6). 

Example) when PIPE 1 is set 

PIPE1, 

 

8.3.2 PIPE definition item 2 

This item specifies the value for the PIPE Configuration Window Register 0. 

Set as follows:   

� Interrupt toggle mode: Specify ITMD when the function is valid.  

  Specify OFF when the function is invalid.  

  (This specification is valid only PIPE5 and PIPE6) 

� Double buffer mode: Specify DBLB when setting to double buffer mode.  

  Specify OFF when setting to single buffer mode.  

  (This specification is valid only PIPE1 and PIPE2) 

� Continuous transmit/receive mode: Specify OFF when setting to non-continuous transmit/receive mode.  

  Specify BSIZE when setting to continuous transmit/receive mode. 

  (This specification is valid only PIPE1 to PIPE4 in full-speed)  

� Transfer direction: Specify DIR_IN when setting to IN direction.  

  Specify DIR_OUT when setting to OUT direction. 

  (This specification is valid only PIPE1 to PIPE4) 

Example) when the double buffer mode and the IN direction are set 

DBLB | DIR_IN, 
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9 Descriptor Definition (descrip.h) 

9.1 Overview 

Since the USB-FW is described as a general-purpose firmware, the device configuration can be specified in 

accordance with the descriptor definitions unique to the user by rewriting the descriptor definition header file. 

The descriptor definitions consist of the following four kinds: 

* For details of each descriptor, refer to "Chapter 9 of USB Revision 2.0 specification".  

* Change PIPE definition (def_ep.h) according to descriptor definition when descriptor definition is changed. 

 

(1) Standard Device Descriptor 

The USB-FW defines in the following table. 

U8  DeviceDescriptor[] 

 

(2) Device Qualifier Descriptor 

The USB-FW defines in the following table. 

U8  QualifierDescriptor[] 

 

(3) Configuration/Other_Speed_Configuration/Interface/Endpoint 

The USB-FW defines in the following table. 
U8  Configuration_Full_1[] 

U8  Configuration_Hi_1[] 

 

(4) String Descriptor 

The USB-FW defines in the following table. 

U8  StringDescriptor_tbl0[] 

U8  StringDescriptor_tbl1[] 

U8  StringDescriptor_tbl2[] 

U8  StringDescriptor_tbl3[] 

U8  StringDescriptor_tbl4[] 

U8  StringDescriptor_tbl5[] 
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9.2 Descriptor Creation 

The USB-FW copies DT_CONFIGURATION or DT_OTHER_SPEED_CONFIGURATION to Configuration_Full_n[1] 

and Configuration_Hi_n[1] in the program depending on the current operation mode of the M66591 by using the 

tables stated in above items (1) to (3)  and create a descriptor on the RAM. 

Parts to be changed in the program are marked RESERVED. 

 

Create flow is as follows: 

  

  
Device state

becomes default

Yes

No

  

Yes

No

Configuration_Hi_1[1] = DT_CONFIGURATION;

Configuration_Full_1[1] = DT_OTHER_SPEED_CONFIGURATION;

Configuration_Hi_1[1] = DT_OTHER_SPEED_CONFIGURATION;

Configuration_Full_1[1] = DT_CONFIGURATION;

Completion

Current speed

is hi-speed

Device state transition

interrupt processing

 

 

9.3 Default Control PIPE Setting 

The USB-FW sets the Default Control PIPE Register of the M66591 after creating a descriptor on the RAM. 

Users have to set the following registers of the M66591. 

(1) C_FIFO Port Control Register 0 (0x28 address) 

(2) Default PIPE Configuration Register 1 (0x82 address) 

(3) Default PIPE Configuration Register 2 (0x84 address) 

The data in the constant table DCP_tbl[] is set to the above (1) and (2) registers. For details, refer to "8. PIPE 

definition". 

The data in the table DeviceDescriptor[7] created on the RAM is set to the above (3) register. Set the max. packet 

size to be used. 

 

9.4 USB-FW Sample Descriptor Configuration 

The descriptor configuration of the USB-FW is the following definitions: 
/* 

 *   |--- Configuration 1 

 *   |       |--- Interface 1-0-0 

 *   |       |       |--- Endpoint 1-0-0-0 

 *   |       |       |--- Endpoint 1-0-0-1 

 *   |       |       |--- Endpoint 1-0-0-2 

 *   |       |       |--- Endpoint 1-0-0-3 

 *   |       |       |--- Endpoint 1-0-0-4 

 *   |       |       |--- Endpoint 1-0-0-5 

 */ 
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10 Restrictions 

The USB-FW has the following restrictions: 

(1) The USB-FW does not support operations in the split bus. 

(2) The USB-FW does not support the DMA transfer processing. 
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11 Revision History 

Version Data Contents 

0.70 ’02.08.05 Release 

0.80 ’02.08.29 The clerical error is corrected. 

0.90 ’02.11.11 7.1 and 8.3 is changed by FW changing. 

0.94 ’03.04.07 Changed corporation name. 
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