

RENESAS DIGITAL ASSP

M66591
USB Sample Firmware

Instruction Manual

April. 7, 2003

RENESAS TECHNOLOGY CORPORATION

RENESAS SOLUTIONS CORPORATION

RENESAS USB SAMPLE FIRMWARE

• Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but

there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire

or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate

measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against

any malfunction or mishap.

• These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation

product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any

other rights, belonging to Renesas Technology Corporation or a third party.

• Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights,

originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained

in these materials.

• All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents

information on products at the time of publication of these materials, and are subject to change by Renesas Technology

Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers

contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest

product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation

assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the

Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

• When using any or all of the information contained in these materials, including product data, diagrams, charts, programs,

and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability

of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or

other loss resulting from the information contained herein.

• Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is

used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an

authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for

any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea

repeater use.

• The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these

materials.

• If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a

license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of

destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or the products contained

therein.

Keep safety first in your circuit designs!

Notes regarding these materials

RENESAS USB SAMPLE FIRMWARE

CONTENTS

1 Overview of Manual... 1

1.1 Overview..1

1.2 Related Documents..1

2 Overview.. 2

2.1 Features of USB-FW..2

2.2 Layer ...2

2.3 File Configuration List...3

2.4 Development Purpose ..3

2.5 Service Overview ...3

2.6 Global Flow..4

3 Operation... 5

3.1 Overview..5

3.2 Modification of USB-FW ...5

3.3 Notes...6

4 Data Transfer ... 7

4.1 Overview..7

4.2 Basic Specification of USB-FW...7

4.3 Data Transmit (IN Token) Operation ..8

4.4 Data Receive (OUT Token) Operation ...9

4.5 PIPE Setting for Data Transfer ..10

4.6 Notes when Modifying ..10

4.7 User Buffer Specification... 11

5 Class/Vender Request... 12

5.1 Overview..12

5.2 Basic Specification ...12

5.3 Detailed Specification ...12

5.4 Example of Control Read (IN Direction) User Firmware Interface ...12

5.5 Example of Control Write (OUT Direction) User Firmware Interface..13

6 User Definition... 14

6.1 Overview..14

6.1.1 Vender ID (descrip.h)...14

6.1.2 Product ID (descrip.h)..14

6.1.3 FIFO endian (defusr.h)...14

6.1.4 I/O power supply (defusr.h) ..14

6.1.5 Address of the M66591 (defusr.h) ..14

6.1.6 Pointer type for address of the M66591 (defusr.h)...15

RENESAS USB SAMPLE FIRMWARE

6.1.7 Oscillation frequency of the oscillator connected to the M66591 (defusr.h)...15

6.1.8 Interrupt vector (defusr.h)...15

7 User Definition Macro (macusr.h)... 16

7.1 Overview..16

7.1.1 Register and FIFO data register read/write macro...16

7.1.2 Register bit set/clear/modify macro...17

7.1.3 Status register bit clear macro..17

7.1.4 Status register bit set macro...18

8 PIPE Definition (def_ep.h)... 19

8.1 Overview..19

8.2 Default Control PIPE Definition ...19

8.2.1 Default control PIPE definition item 1..19

8.2.2 Default control PIPE definition item 2..20

8.3 PIPE 1 to 6 Definitions..20

8.3.1 PIPE definition item 1...21

8.3.2 PIPE definition item 2...21

9 Descriptor Definition (descrip.h) .. 22

9.1 Overview..22

9.2 Descriptor Creation ..23

9.3 Default Control PIPE Setting...23

9.4 USB-FW Sample Descriptor Configuration ..23

10 Restrictions ... 24

11 Revision History.. 25

RENESAS USB SAMPLE FIRMWARE

- 1 -

1 Overview of Manual

1.1 Overview

This document is the instruction manual for the RENESAS DIGITAL ASSP M66591 USB Sample Firmware

(hereinafter referred to as USB-FW) that is a sample program for control of USB interface using the M66591.

1.2 Related Documents

[1] M66591 Datasheet

 [http://www.renesas.com/eng/products/mpumcu/specific/usb_mcu/index.html]

[2] Basic Information of USB (in Japanese)

 [http://www.renesas.com/jpn/products/mpumcu/specific/usb_mcu/outline7.html]

[3] USB Specification Version 1.1 (Chapter 8 Protocol Layer)

 [http://www.renesas.com/jpn/products/mpumcu/specific/usb_mcu/outline7.html]

[4] USB Specification Version 1.1 (Chapter 9 Device Framework)

 [http://www.renesas.com/jpn/products/mpumcu/specific/usb_mcu/outline7.html]

[5] Universal Serial Bus Revision 2.0 specification

 [http://www.usb.org/developers/docs]

[6] USB Application Note

 [http://www.renesas.com/eng/products/mpumcu/specific/usb_mcu/index.html]

RENESAS USB SAMPLE FIRMWARE

- 2 -

2 Overview

2.1 Features of USB-FW

The USB-FW has the following features:

� The control MCU and peripheral are not specified for the configuration (users can define them individually).

� The USB-FW can verify the connection using USBCommandVerifier.exe (hereinafter referred to as USBCV).

(The USBCV can be downloaded from http://www.usb.org/developers/tools)

� A sample program for bulk (IN/OUT)/interrupt (IN) data communication is available.

� Files are divided according to function (refer to file configuration list).

� The user program has no need to access to the M66591 register directly.

2.2 Layer

The USB-FW consists of the following layers:

User

Program

Status Confirmation

Status Confirmation

Status Confirmation

USB-FW

Request, Setting

Notification

Notification

Notification

Request, Setting

Status Setting

Request, Setting

APP

M66591-HW

USB Host

Request, Setting

Request, Setting

User FW

IF Library

Request, Setting Request, Setting

Register Control

HW

Vender / Class

Request

User Firmware

USER

Application

USER - Sample
Interface

(Control Library)

Standard
Request

Request Analysis

Data Analysis, Generation

RENESAS USB SAMPLE FIRMWARE

- 3 -

2.3 File Configuration List

File Name Overview

changeep.c User application processing

classvender.c Class/vender request processing

controlrw.c Control read/write processing

dataio.c Data read/write processing

datatbl.h User buffer definition for transmit/receive

def591.h Register address/bit definition for the M66951

def_ep.h Data definition for PIPE setting

defusr.h User definition

descrip.h Descriptor data definition

extern.h External reference definition

global.c Global variable processing

intrn.c INTR,INTN,BEMP interrupt processing

usbsig.c USB signal processing

libassp.c USB ASSP register operation processing

Lib591.c USB ASSP register operation processing

Libassp.h USB ASSP register operation processing definition

Macusr.h User macro definition

main.c Dummy user application

Status.c Internal status operation processing

Stdreqget.c Standard request processing

Stdreqset.c Standard request processing

Typedef.h Variable type definition

Usbint.c USB interrupt processing

Version.h Version information

2.4 Development Purpose

The USB-FW is developed for the following purposes:

� To facilitate the development of the USB communication programs using the M66591.

� To supplement the explanation of the M66591 control with concrete examples.

2.5 Service Overview

The USB-FW provides the following services for the upper layer (user program layer):

� M66591 initialization (Reset, oscillation control, PIPE initialization, etc.)

� Request response (Standard request [USB Revision 2.0 specification])

� Data transfer (Bulk and interrupt transfer: CPU access)

� Status notification (Status notification function)

� Request notification (Request notification function)

RENESAS USB SAMPLE FIRMWARE

- 4 -

2.6 Global Flow

The USB-FW configures interrupt programs consisting of control functions that transmit/receive USB data.

The interrupt event is occurred by external interrupt to the control MCU from the M66591.

The external interrupt program identifies the factor of interrupt and executes relevant processing.

(1) Special signal processing

Vbus interrupt, resume interrupt, SOF detect interrupt*1 and device state transition interrupt

(*1: The USB-FW does not includes processing. The processing should be created if needed.)

(2) Control transfer processing

Control transfer stage transition interrupt and device state transition interrupt

(3) PIPE transfer processing

Buffer empty/size error interrupt, buffer not ready interrupt and buffer ready interrupt

Since the USB-FW executes USB control processing in an interrupt routine, a permanent loop occurs in the main

function after the main function initializes the control MCU and registers related to the M66591.

The global flow diagram of the USB-FW is as follows.

Initialization

USB operation enable

Main loop

Dummy user application

USB interrupt processing

Connector connection/
disconnection processing

Interrupt factor

checking

Special signal
processing

PIPE1~6 transfer
processing

Control transfer
processing

RENESAS USB SAMPLE FIRMWARE

- 5 -

3 Operation

3.1 Overview

The USB-FW is enabled to communicate and execute the USBCV program, when the control MCU and peripheral

are initialized (main.c), and the user definition information file (defusr.h) and user definition macro file (macusr.h)

are modified.

3.2 Modification of USB-FW

The following program file and header file program have to be modified in order to activate the USB-FW and execute

the USBCV.

(1) The following functions in the main.c have to be modified.

� Initialize the control MCU (CPUInit function)

� Initialize the peripheral (PeripheralInit function)

� Enable the control MCU interrupt (enableINT function)

� Adjust time in functions for waiting for specified time (delay_1ms function and delay_10us function)

The specified time is waited by loop processing. Adjust the number of loops to wait for the specified time

according to user’s system.

(2) The following files have to be customized by users.

� Specify vender ID and product ID in the descrip.h.

VenderID and ProductID

(For details, refer to "6. User definition")

� Specify endian, I/O voltage, register base address, far area, oscillation constant, and interrupt function in the

defusr.h.

FIFO_ENDIAN, VIF_SET, USB_BASE, REGP, XIN and usbint

(For details, refer to "6. User definition")

(3) The following processings have to be executed when building

� Specify section area

� Create start up routine

(4) Others

� Special signal processing (Not need at the firmware operation check (execute the USBCV program) level)

RENESAS USB SAMPLE FIRMWARE

- 6 -

3.3 Notes

The USB-FW is a general-purpose firmware not specifying the control MCU and peripheral. It is applicable only to

standard requests. It executes data communications using temporary interface between the USB-FW and dummy

user application.

Therefore, the USB-FW have to be customized the following cases by users:

� When class specification and response to requests unique to a vendor are required

� When the communication speed and program capacity are taken into consideration

� When the user interface is set separately

* The USB-FW does not guarantee the USB communication operations. When applying it to user’s system, users

must verify its operations, and confirm its connection on various host controllers.

RENESAS USB SAMPLE FIRMWARE

- 7 -

4 Data Transfer

4.1 Overview

The USB-FW is capable of simple data communications between the host PC and the device if users prepare the

USB driver on the host PC and a data transfer application. (For the device configuration of the USB-FW, refer to the

descriptor definition section.)

Simple data communications applicable to user’s system (system on the host PC) can be realized by modifying

information necessary for the device configuration (descriptor definition (descrip.h) and PIPE definition (def_ep.h))

and the dummy user application (main.c).

Since data communication is based on the functional specifications unique to the user, the user should individually

modify the transferring method, requests for communication start and end, and buffer configuration.

4.2 Basic Specification of USB-FW

� The USB-FW realizes data transfer between the user buffer and the FIFO port register through CPU access.

(The data flow is as follows.)

� The user buffer has secured the 512-byte area to all PIPEs.

(Secure the user buffer area larger than the FIFO buffer area.)

� Availability to transfer data larger than PIPE FIFO buffer size by modifying size of the user buffer.

� The transmit data to the host use the fixed data each PIPE.

� The user buffer address notification function (DI_Start/DO_Start) is a function common to CPU/DMA accesses.

� For data transmit/receive, a buffer ready interrupt is used. The buffer ready interrupt of each PIPE is enabled

when data transmit/receive is started.

Data flow:

RAM

PIPE 1 user buffer

PIPE 2 user buffer

PIPE 6 user buffer

M66591

F
IF
O
 p
o
rt
 r
e
g
is
te
r

PIPE 1 FIFO buffer

PIPE 2 FIFO buffer

PIPE 6 FIFO buffer

Device

Host PC

USB

Transfer through CPU access

RENESAS USB SAMPLE FIRMWARE

- 8 -

4.3 Data Transmit (IN Token) Operation

The USB-FW transmits the data (support IN token) to the host PC as follows:

(1) Check enable/disable of the user buffer use. (Enable when the Buffer_Write_Data_Flag is set to the

DATA_NONE.)

When the user buffer is disabled, no processing is executed, and processing for another PIPE is executed.

(2) Check whether there are the transmit data or not. (When the returned value to the Create_In_Data function is

other than the DATA_NONE, there are the transmit data.)

When there are not the transmit data, no processing is executed, and processing for another PIPE is executed.

(3) The USB-FW sets the user buffer address and the transmit byte count (dtcnt), disables the user buffer use (the

Buffer_Write_Data_Flag is set to the DATA_WAIT), and enables the buffer ready interrupt (DI_Start function).

(4) Write the data in the user buffer to the FIFO port register when the buffer ready interrupt has been occurred.

� When transmit byte count (dtcnt) > FIFO buffer size

Write the data equal to the FIFO buffer size, and subtract the FIFO buffer size from the transmit byte

count. (dtcnt = dtcnt - FIFO buffer size).

� When transmit byte count (dtcnt) ≤ FIFO buffer size

Write the data equal to the transmit byte count, disable the buffer ready interrupt, and enable the user

buffer use (the Buffer_Write_Data_Flag is set to the DATA_NONE).

Control flow:

Main

Enable/disable
of the user
buffer use?

DI_Start()

Disable

No

INTR_int

Return

Data_In

Writing the data in user buffer
register to FIFO port register.

Return

DI_Start

Return

Data_In()
No

Buffer ready
interrupt status clear

Are there
transmit data?

User buffer
address setting

User buffer
use disable

Buffer ready
interrupt enable Buffer ready

interrupt disable

User buffer
use enable

Could all the data
equal to the transmit
byte count be written?

Data flow:

RAM

M66591

F
IF
O
 p
o
rt
 r
e
g
is
te
r

Device

Host PC

USB

User buffer

FIFO buffer

First INTR

Second INTR

n INTR

RENESAS USB SAMPLE FIRMWARE

- 9 -

4.4 Data Receive (IN Token) Operation

The USB-FW receives the data (support OUT token) from the host PC as follows:

(1) Check enable/disable of the user buffer use. (Enable when the Buffer_Read_Data_Flag is set to the

DATA_NONE.)

(2)-1 Check enable/disable of the user buffer read when the user buffer is disabled. (Enable when the

Buffer_Read_Data_Flag is set to the DATA_OK.)

Enable the user buffer use when the user buffer is enabled to read (the Buffer_Read_Data_Flag is set to the

DATA_NONE).

When the user buffer is disabled to read, no processing is executed, and processing for another PIPE is executed.

(2)-2 When the user buffer is enabled, the USB-FW sets the user buffer address and the receive byte count (dtcnt),

disables the user buffer use (the Buffer_Read_Data_Flag is set to DATA_WAIT), and enables the buffer ready

interrupt (DO_Start function).

(3) Read the data from the FIFO port register and write the data to the user buffer when the buffer ready interrupt

has been occurred.

� When receive byte count (dtcnt) > FIFO buffer size

Read the data equal to the FIFO buffer size, and subtract the FIFO buffer size from the receive byte count.

(dtcnt = dtcnt - FIFO buffer size).

� When receive byte count (dtcnt) ≤ FIFO buffer size

Read the data equal to the receive byte count, disable the buffer ready interrupt, and enable the user buffer

use (the Buffer_Read_Data_Flag is set to the DATA_OK).

Control flow:

Main

DO_Start()

INTR_int

Return

Data_Out

Reading the data in FIFO
port register to user buffer.

Return

DO_Start

Return

Data_Out() No

Buffer ready
interrupt status clear

User buffer
address setting

User buffer
use disable

Buffer ready
interrupt enable Buffer ready

interrupt disable

User buffer
read enable

Receive data
processing

User buffer
use enable

Enable/disable
of the user
buffer use?

Disable

Disable

Enable/disable
of the user
buffer read?

Could all the data
equal to the receive
byte count be read?

Data flow:

RAM

M66591

F
IF
O
 p
o
rt
 r
e
g
is
te
r

Device

Host PC

USB

User buffer

FIFO buffer

First INTR

Second INTR

n INTR

RENESAS USB SAMPLE FIRMWARE

- 10 -

4.5 PIPE Setting for Data Transfer

The USB communication has to modify the PIPE setting for data communications by the request of the

Set_Configuration/Set_Interface etc.

When receiving the above request, the USB-FW retrieves the PIPE table index number to be used from the

descriptor table in the configuration or interface to be modified, and automatically sets the PIPE configuration

register according to the PIPE definitions.

(1) PIPE setting

The USB-FW calls the Esrch function using the configuration number, interface number and alternate setting

as arguments. Then, it calls the resetEP function using the configuration number as arguments.

void Esrch (Configuration number, interface number, alternate setting);

void resetEP (Configuration number);

The Esrch function retrieves and sets the PIPE definition index numbers of all PIPEs to be used in the interface

of the specified configuration.

The resetEP re-sets the PIPE configuration registers for all PIPEs retrieved in the Esrch. When modifying

PIPE specifications, it is necessary to disable existing PIPE communications to avoid invalid data input or input

errors during modification. Therefore, the resetEP disables relevant PIPE interrupt.

(2) Descriptor table

The USB-FW uses temporary descriptor definitions. Create descriptor definitions unique to user’s system

(descrip.h) according to the windows driver and applications on the host.

Modify PIPE definition (def_ep.h) simultaneously when descriptor definition is modified. Also, change the

dummy user application (Change_Config/Change_Interface function) if it is required.

* Define the PIPE information in the same order as descriptor definition and PIPE definition. (For details,

refer to PIPE definition section.)

(3) Change_Config / Change_Interface function

These functions are called by the USB-FW when the Set_Configuration or Set_Interface request is received.

Add the processing by the USB-FW if user applications require some processing.

4.6 Notes when Modifying

� The user buffer should be larger than max. packet (FIFO buffer when setting to continuous transmit/receive) size.

� A dummy area is provided in each user buffer to facilitate verification of communication.

� Modify PIPE definition (def_ep.h) simultaneously when descriptor definition (descrip.h) is modified.

� When the usage (or configuration) of any user buffer is modified, it may be required to modify library functions.

RENESAS USB SAMPLE FIRMWARE

- 11 -

4.7 User Buffer Specification

� An area is secured to count the accesses to the user buffers.

� The user buffers define different default data depending on PIPE.

typedef struct {

 U16 size; /* Buffer size */

 U16 count; /* Buffer access counter */

 U8 Dummy[12]; /* Data area position adjustment */

 U8 buff[EP1_DATA_SIZE]; /* Data buffer area */

} ep_buff1;

ep_buff1 EP_Buff1 = {

 EP1_DATA_SIZE, 0,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,

 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,

 0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F,

 0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F,

 :

 :

ep_buff2 EP_Buff2 = {

 EP2_DATA_SIZE, 0,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,0x02,

 0x0F,0x0E,0x0D,0x0C,0x0B,0x0A,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x01,0xFF,

 0x1F,0x1E,0x1D,0x1C,0x1B,0x1A,0x19,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,

 0x2F,0x2E,0x2D,0x2C,0x2B,0x2A,0x29,0x28,0x27,0x26,0x25,0x24,0x23,0x22,0x21,0x20,

 :

 :

 :

 :

 :

ep_buff6 EP_Buff6 = {

 EP6_DATA_SIZE, 0,0x06,0x06,0x06,0x06,0x06,0x06,0x06,0x06,0x06,0x06,0x06,0x06,

 0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,

 0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,0xF1,

 0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,0xF2,

RENESAS USB SAMPLE FIRMWARE

- 12 -

5 Class/Vender Request

5.1 Overview

The USB-FW can respond to class/vender requests if the users prepare the windows driver and applications on the

host PC, and a user firmware on the device side. As the basic structure of data communication on the data stage, the

USB-FW provides only the entries for the functions designed with the same structure as that of data communication

on each PIPE.

5.2 Basic Specification

� The following functions are available as user buffer address notification functions:

CR_Start (Control read user buffer address notification function)

CW_Start (Control write user buffer address notification function)

� The following functions are available as data read/write functions:

Control_Read (Control read data write function)

Control_Write (Control write data read function)

� Secure the user buffer area larger than the data capacity that transmit/receive on the data stage:

(The user buffer size is required larger than the data capacity transferred at one control transfer.)

5.3 Detailed Specification

� A user buffer is provided between the USB-FW and user firmware, and the USB-FW realizes data transfer

between the user buffer and the FIFO port register through CPU access.

-> Use the CR_Start or the CW_Start function in the user application.

� The transfer direction of the data stage is judged using the INTR_int or the BEMP_int function.

� The data are continuously transferred using the interrupt when transmitting/receiving.

-> The data are continuously transferred by the Control_Read/Control_Write function.

� The transmit data to the host (applicable to the Control_Read) should be created by the user firmware.

Proposal 1: Creation according to request in interrupt (same as standard request)

Proposal 2: Creation by application (notification of receipt to user application from interrupt)

� The receive data from the host (applicable to the Control_Write) should be analyzed by the user firmware.

Proposal 1: Creation according to request in interrupt (same as standard request)

Proposal 2: Creation by application (notification of receipt to user application from interrupt)

5.4 Example of Control Read (IN Direction) User Firmware Interface

The example of the class/vender request created by the user firmware is as follows:

(1) User calls the CR_Start function in the control read data stage (ClassTrans1 function).

(2) The buffer empty/size over interrupt is occurred (BEMP_int function).

The transmit data transfers to the FIFO buffer by the Control_Read function.

* These are examples for creating the class/vender request. Actually, create the request according to user’s

specifications.

RENESAS USB SAMPLE FIRMWARE

- 13 -

Transmit flow:

Data stage

Return

CR_Start

BEMP_int

Return

Control_Read

Notes:

• Call the transmit start notification (CR_Start function) after the creation of the transmit data has completed.

• Notify the user buffer address and the data size in the transmit start notification (CR_Start function).

• Secure the user buffer capacity larger than the data size (wLength) transmitted in the control read data stage.

• Notify the completion of control transfer (Control_End function) at the control read status stage transition of

the USB interrupt function.

• The user firmware must store the request type (control read setup stage information) to create the transmit

data.

5.5 Example of Control Write (OUT Direction) User Firmware Interface

The example of the class/vender request created by the user firmware is as follows:

(1) User calls the CW_Start function in the control write data stage (ClassTrans2 function).

(2) The buffer ready interrupt is occurred when the data has been received from the host PC (INTR_int function).

The receive data transfers to the user buffer by the Control_Write function.

(3) The receive data in the user buffer is processed in the control write status stage (ClassTrans5 function).

* These are examples for creating the class/vender request. Actually, create the request according to user’s

specifications.

Receive flow:

CW_Start

Data stage

Return

Control_Write

Buffer ready

Return

Receive data
processing

Status stage

Return

Notes:

• Notify the buffer address and the data size in the receive start notification (CW_Start function).

• Secure the user buffer capacity larger than the received data size (wLength) in the control write data stage.

• Notify the completion control transfer to the USB-FW after the receive data analysis has completed (using

Control_End function).

RENESAS USB SAMPLE FIRMWARE

- 14 -

6 User Definition

6.1 Overview

Since the USB-FW is described as a general-purpose firmware, it is possible to create an execution file unique to the

user by rewriting the user definition information file.

Change the following eight items according to user’s system.

* Other definitions may be required depending on control MCU.

(1) Vender ID

(2) Product ID

(3) FIFO endian

(4) I/O power supply

(5) Address of the M66591

(6) Pointer type for address of the M66591

(7) Oscillation frequency of the oscillator connected to the M66591

(8) Interrupt vector

6.1.1 Vender ID (descrip.h)

Specify the vender ID according to user’s system.

Example) When 0x1234 is set

#define VenderID 0x1234

6.1.2 Product ID (descrip.h)

Specify the product ID according to user’s system.

Example) When 0x5678 is set

#define ProductID 0x5678

6.1.3 FIFO endian (defusr.h)

Specify the endian for access to the FIFO port of the M66591.

Example) When the little endian is set

#define FIFO_ENDIAN LITTLE_ENDIAN

6.1.4 I/O power supply (defusr.h)

Specify the voltage of the I/O pin in the M66591.

Example) When 3.3V is set

#define VIF_SET VIF3

6.1.5 Address of the M66591 (defusr.h)

Specify the standard address for access to the M66591.

All registers are specified the address based on offset from the standard address.

Example) When 0x8000 address is set

#define USB_BASE (0x8000)

RENESAS USB SAMPLE FIRMWARE

- 15 -

6.1.6 Pointer type for address of the M66591 (defusr.h)

Specify the pointer type for access to the M66591.

Each register on the M66591 is cast in the REGP type to cope with an MCU requiring declaration of the near/far.

Comment out one of them according to the type of control MCU.

Example) When the M66591 is allocated to near area with an MCU requiring declaration of the near/far

typedef volatile U16 REGP;

/* typedef volatile far U16 REGP; */

6.1.7 Oscillation frequency of the oscillator connected to the M66591 (defusr.h)

Select the oscillation frequency of the oscillator to be connected to the M66591 from three oscillation types.

Example) When 24MHz oscillator is used

#define XIN Xtal24

6.1.8 Interrupt vector (defusr.h)

For an MCU requiring declaration of interrupt processing function, it is necessary to declare interrupt for USB

communication provided by the USB-FW. Cancel the comment as necessary. When the declaration is not the

#pragma, change the declaration.

Example) When the pragma declaration is required for interrupt processing function (usbint)

#pragma INTERRUPT usbint

RENESAS USB SAMPLE FIRMWARE

- 16 -

7 User Definition Macro (macusr.h)

7.1 Overview

The M66591 has been designed compliant with the USB Revision 2.0 specification. It must access each register in

little endian. The USB-FW is described as a general-purpose firmware on the assumption that the endian of control

MCU may differ from that of the M66591. Since the register access and FIFO register access are described as macros,

it is possible to create an execution file unique to the user by rewriting the user definition macro header file. Change

the macro for access to the register and FIFO register according to user’s system.

The register access macro consists of the following nine macros classified into four kinds:

(1) Register and FIFO data register read/write macro

(2) Register bit set/clear/modify macro

(3) Status register bit clear macro

(4) Status register bit set macro

7.1.1 Register and FIFO data register read/write macro

These macros are used for reading and writing data in the register and the FIFO data register.

The control MCU and the M66591 must be connected so that DMA transfer between memory and FIFO data register

can be executed normally. Refer “6.1.3 FIFO endian (defusr.h)” to set FIFO endian.

#define USBRD(r, v) do{(v) = (r); } while(0)

#define USBWR(r, v) do{(r) = (v); } while(0)

#define USBRD_FF(r, v) do{(v) = (r); } while(0)

#define USBWR_FF(r, v) do{(r) = (v); } while(0)

* Connect the control MCU, memory and the M66591 in sufficient consideration of the system configuration.

RENESAS USB SAMPLE FIRMWARE

- 17 -

7.1.2 Register bit set/clear/modify macro

These macros are used for setting, clearing and modifying register bits.

Each macro is described in accordance with RMW (Read Modify Write) command and uses the above-mentioned

macro for reading and writing registers and FIFO data register.

* It is not necessary to change these macros unique to the user.

* Do not clear the bit of the status register by this bit clear macro. The bit of the status register is cleared using

the status register bit clear macro.

/* set bit(s) of USB register */

/* r : USB register */

/* v : value to set */

#define USB_SET_PAT(r, v) do{ register U16 tmp; \

 USBRD(r, tmp); \

 tmp |= (v); \

 USBWR(r, tmp); }while(0)

/* reset bit(s) of USB register */

/* r : USB register */

/* m : bit pattern to reset */

#define USB_CLR_PAT(r, m) do{ register U16 tmp; \

 USBRD(r, tmp); \

 tmp &= (~(m)); \

 USBWR(r, tmp); }while(0)

/* modify bit(s) of USB register */

/* r : USB register */

/* v : value to set */

/* m : bit pattern to modify */

#define USB_MDF_PAT(r, v, m) do{ register U16 tmp; \

 USBRD(r, tmp); \

 tmp &= (~(m)); \

 tmp |= v; \

 USBWR(r, tmp); }while(0)

7.1.3 Status register bit clear macro

This macro is used for clearing the status register bit.

This macro is described in accordance with RMW (Read Modify Write) command and uses the above-mentioned

macro for reading and writing registers and FIFO data register. This macro avoids clearing the status that has

changed during execution of a command in accordance with RMW command.

* It is not necessary to change these macros unique to the user.

* This macro is used only for the status register with invalid writing “1”.

/* reset bit(s) of USB status */

/* r : USB register */

/* m : bit pattern to reset */

#define USB_CLR_STS(r, m) do{ register U16 tmp; \

 tmp = 0; \

 tmp |= (~(m)); \

 USBWR(r, tmp); }while(0)

RENESAS USB SAMPLE FIRMWARE

- 18 -

7.1.4 Status register bit set macro

This macro is used for setting the status register bit.

This macro uses the above-mentioned macro for writing register. The macro avoids clearing the status that has

changed during execution of a command by writing “1” to all bits.

(Use this macro when writing “1” to the bit by the VBUSINT bit clear etc. in the internal clock disable state.)

* It is not necessary to change these macros unique to the user.

* This macro uses only for the status register with invalid writing “1”.

/* set bit(s) of USB status */

/* r : USB register */

/* m : dummy */

#define USB_SET_STS(r, m) USBWR(r, 0xffff)

RENESAS USB SAMPLE FIRMWARE

- 19 -

8 PIPE Definition (def_ep.h)

8.1 Overview

The M66591 sets the conditions for PIPEs by the configuration register. The USB-FW is described as a

general-purpose firmware on the assumption that PIPE settings will be changed as the result of modification of

configuration and alternative caused by standard requests, such as Set_Configuration and Set_Interface. It is

possible to create an execution file unique to the user by configuring PIPE information (usage) in each state on the

header file as a data table and rewriting the PIPE definition header file (def_ep.h).

Two parameters for each PIPE must be set; full-speed (Eptbl_Full_n) and hi-speed (Eptbl_Hi_n).

Change the PIPE definition according to user’s system.

* Change descriptor definition (descrip.h) according to PIPE definition when PIPE definition is changed.

The default control PIPE definition consists of the following two items (U16 x 2):

(1) C_FIFO Port Control Register 0 (0x28 address)

(2) Default Control PIPE Configuration Register 1 (0x82 address)

The PIPE 1 to 6 definitions consist of the following two items (U16 x 2):

(1) C_FIFO Port Control Register 0 (0x28 address)

(2) PIPE Configuration Window Register 0 (0x90 address)

8.2 Default Control PIPE Definition

The default control PIPE definition consists of the table.

The default control PIPE information table described as a sample in the USB-FW is the following:

Example)

const U16 DCPtbl[] = {

 /* C_FIFOControlRegister 0 (0x28) */

 RCNT | MBW_16, <- Definition item 1
 /* Default Control PIPE Configuration Register 1 (0x82) */

 CNTMD <- Definition item 2

8.2.1 Default control PIPE definition item 1

This item specifies the value for the C_FIFO Port Control Register 0.

Set as follows:

� Read count mode : Specify RCNT when the ODLN register value is counted down.

Specify OFF when the ODLN register value is not counted down.

� FIFO access bit width : Specify MBW_8 when setting to 8-bit width.

Specify MBW_16 when setting to 16-bit width.

Example) when the read count mode and the 16-bit width are set

RCNT | MBW_16,

RENESAS USB SAMPLE FIRMWARE

- 20 -

8.2.2 Default control PIPE definition item 2

This item specifies the value for the Default Control PIPE Configuration Register 1.

Set as follows:

� Continuous transmit/receive mode : Specify CNTMD when setting to continuous transmit/receive mode.

Specify OFF when setting to non-continuous transmit/receive mode.

Example) when the continuous transmit/receive mode is set

CNTMD

* For the specification method of max packet size of the default control PIPE, refer to "9. Descriptor Definition

(descrip.h)".

8.3 PIPE 1 to 6 Definitions

Each PIPE definition consists of respective table of each configuration same as the descriptor definitions. The table

is described in order of related interfaces and alternate settings. The PIPE definition described as a sample in the

USB-FW is the following.

Each PIPE definition item is described on the following pages.

Example)

/* Configuration 1 */

const U16 EPtbl_Full_1[] = { <- for full-speed
 /* Interface 1-0-0 */

 /* Endpoint 1-0-0-0 */

 /* (EP1 BULK) Single/DoubleBuffer CONT/notCONT IN/OUT */

 /* C_FIFO Port Control Register 0 (0x28) */

 PIPE1, <- PIPE definition 1
 /* PIPE Configuration Window Register (0x90) */

 DBLB | CNTMD | DIR_IN, <- PIPE definition 2

:

:

:

};

const U16 EPtbl_Hi_1[] = { <- for hi-speed
 /* Interface 1-0-0 */

 /* Endpoint 1-0-0-0 */

 /* (EP1 BULK notCONT) Single/DoubleBuffer IN/OUT */

 /* C_FIFO Port Control Register 0 (0x28) */

 PIPE1,

 /* PIPE Configuration Window Register (0x90) */

 DBLB | DIR_IN,

:

:

:

};

RENESAS USB SAMPLE FIRMWARE

- 21 -

8.3.1 PIPE definition item 1

This item specifies the value for the C_FIFO Port Control Register 0.

Set as follows:

� CPU access PIPE: Specify CPU access PIPE (PIPE1 to PIPE6).

Example) when PIPE 1 is set

PIPE1,

8.3.2 PIPE definition item 2

This item specifies the value for the PIPE Configuration Window Register 0.

Set as follows:

� Interrupt toggle mode: Specify ITMD when the function is valid.

 Specify OFF when the function is invalid.

 (This specification is valid only PIPE5 and PIPE6)

� Double buffer mode: Specify DBLB when setting to double buffer mode.

 Specify OFF when setting to single buffer mode.

 (This specification is valid only PIPE1 and PIPE2)

� Continuous transmit/receive mode: Specify OFF when setting to non-continuous transmit/receive mode.

 Specify BSIZE when setting to continuous transmit/receive mode.

 (This specification is valid only PIPE1 to PIPE4 in full-speed)

� Transfer direction: Specify DIR_IN when setting to IN direction.

 Specify DIR_OUT when setting to OUT direction.

 (This specification is valid only PIPE1 to PIPE4)

Example) when the double buffer mode and the IN direction are set

DBLB | DIR_IN,

RENESAS USB SAMPLE FIRMWARE

- 22 -

9 Descriptor Definition (descrip.h)

9.1 Overview

Since the USB-FW is described as a general-purpose firmware, the device configuration can be specified in

accordance with the descriptor definitions unique to the user by rewriting the descriptor definition header file.

The descriptor definitions consist of the following four kinds:

* For details of each descriptor, refer to "Chapter 9 of USB Revision 2.0 specification".

* Change PIPE definition (def_ep.h) according to descriptor definition when descriptor definition is changed.

(1) Standard Device Descriptor

The USB-FW defines in the following table.

U8 DeviceDescriptor[]

(2) Device Qualifier Descriptor

The USB-FW defines in the following table.

U8 QualifierDescriptor[]

(3) Configuration/Other_Speed_Configuration/Interface/Endpoint

The USB-FW defines in the following table.
U8 Configuration_Full_1[]

U8 Configuration_Hi_1[]

(4) String Descriptor

The USB-FW defines in the following table.

U8 StringDescriptor_tbl0[]

U8 StringDescriptor_tbl1[]

U8 StringDescriptor_tbl2[]

U8 StringDescriptor_tbl3[]

U8 StringDescriptor_tbl4[]

U8 StringDescriptor_tbl5[]

RENESAS USB SAMPLE FIRMWARE

- 23 -

9.2 Descriptor Creation

The USB-FW copies DT_CONFIGURATION or DT_OTHER_SPEED_CONFIGURATION to Configuration_Full_n[1]

and Configuration_Hi_n[1] in the program depending on the current operation mode of the M66591 by using the

tables stated in above items (1) to (3) and create a descriptor on the RAM.

Parts to be changed in the program are marked RESERVED.

Create flow is as follows:

Device state

becomes default

Yes

No

Yes

No

Configuration_Hi_1[1] = DT_CONFIGURATION;

Configuration_Full_1[1] = DT_OTHER_SPEED_CONFIGURATION;

Configuration_Hi_1[1] = DT_OTHER_SPEED_CONFIGURATION;

Configuration_Full_1[1] = DT_CONFIGURATION;

Completion

Current speed

is hi-speed

Device state transition

interrupt processing

9.3 Default Control PIPE Setting

The USB-FW sets the Default Control PIPE Register of the M66591 after creating a descriptor on the RAM.

Users have to set the following registers of the M66591.

(1) C_FIFO Port Control Register 0 (0x28 address)

(2) Default PIPE Configuration Register 1 (0x82 address)

(3) Default PIPE Configuration Register 2 (0x84 address)

The data in the constant table DCP_tbl[] is set to the above (1) and (2) registers. For details, refer to "8. PIPE

definition".

The data in the table DeviceDescriptor[7] created on the RAM is set to the above (3) register. Set the max. packet

size to be used.

9.4 USB-FW Sample Descriptor Configuration

The descriptor configuration of the USB-FW is the following definitions:
/*

 * |--- Configuration 1

 * | |--- Interface 1-0-0

 * | | |--- Endpoint 1-0-0-0

 * | | |--- Endpoint 1-0-0-1

 * | | |--- Endpoint 1-0-0-2

 * | | |--- Endpoint 1-0-0-3

 * | | |--- Endpoint 1-0-0-4

 * | | |--- Endpoint 1-0-0-5

 */

RENESAS USB SAMPLE FIRMWARE

- 24 -

10 Restrictions

The USB-FW has the following restrictions:

(1) The USB-FW does not support operations in the split bus.

(2) The USB-FW does not support the DMA transfer processing.

RENESAS USB SAMPLE FIRMWARE

- 25 -

11 Revision History

Version Data Contents

0.70 ’02.08.05 Release

0.80 ’02.08.29 The clerical error is corrected.

0.90 ’02.11.11 7.1 and 8.3 is changed by FW changing.

0.94 ’03.04.07 Changed corporation name.

RENESAS USB SAMPLE FIRMWARE

RENESAS DIGITAL ASSP M66591

USB Sample Firmware Instruction Manual

Copyright © 2003 by Renesas Technology Corporation

Copyright © 2003 by Renesas Solutions Corporation

