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Conventions used in this document 
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Term Meaning 

$ Hexadecimal numbers are marked with a leading ‘$’ sign: The number $7FF is equal to 2047 decimal. 

— Bits shown as “— ” in register diagrams are equivalent to bits marked Reserved. 

italics Italicized words introduce a term described in the adjacent text or in the Glossary. 
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2 Copyright © 2007—2008 Synaptics Incorporated. All Rights Reserved. 



Synaptics RMI3 Interfacing Guide  PN: 511-000099-01 Rev. F 

Contents 
1. INTRODUCTION............................................................................................................... 5 

1.1. Conventions used in RMI documentation.............................................................. 5 
2. THE STRUCTURE OF RMI .............................................................................................. 6 

2.1. Registers ............................................................................................................... 6 
2.1.1. Register map ............................................................................................. 7 

2.2. RMI functions ........................................................................................................ 8 
2.2.1. Function numbers ...................................................................................... 8 

2.3. RMI physical layer operations ............................................................................... 9 
2.3.1. Writing registers......................................................................................... 9 
2.3.2. Reading registers....................................................................................... 9 
2.3.3. Signaling attention and interrupts ............................................................ 10 
2.3.4. Spontaneous resets................................................................................. 10 

2.4. Kinds of RMI registers ......................................................................................... 11 
2.4.1. Control registers ...................................................................................... 11 
2.4.2. Status registers........................................................................................ 12 
2.4.3. Query registers ........................................................................................ 12 
2.4.4. Data registers .......................................................................................... 12 
2.4.5. Command registers ................................................................................. 12 

2.5. Data reporting...................................................................................................... 13 
2.5.1. Data source numbering ........................................................................... 13 
2.5.2. Interrupt Request ..................................................................................... 15 
2.5.3. Device Status register.............................................................................. 15 
2.5.4. Attention signal ........................................................................................ 16 
2.5.5. Data register page ................................................................................... 17 
2.5.6. Data coherence ....................................................................................... 18 

2.6. Standard control, command, and status registers ............................................... 18 
2.6.1. Register $0000: Device Control register.................................................. 18 
2.6.2. Register $0001: Interrupt Enable register................................................ 21 
2.6.3. Register $0002: Error Status register ...................................................... 21 
2.6.4. Register $0003: Interrupt Request status register ................................... 23 
2.6.5. Register $0004: Device Command register............................................. 23 

2.7. Standard query registers ..................................................................................... 24 
2.7.1. Register $0200: RMI Protocol Version query .......................................... 25 
2.7.2. Register $0201: Manufacturer ID query................................................... 26 
2.7.3. Register $0202: Physical Interface Version query................................... 26 
2.7.4. Register $0203: Product Properties query............................................... 26 
2.7.5. Registers $0204–$0207: Product Info query ........................................... 27 
2.7.6. Registers $0208–$020D: Device Serialization queries............................ 27 
2.7.7. Registers $0210–$021F: Product ID queries........................................... 28 
2.7.8. Registers $0310–$037F: Function Presence queries.............................. 28 

2.8. Function-specific registers................................................................................... 29 
3. STANDARD RMI FUNCTIONS....................................................................................... 31 

3.1. Function $10: 2-D TouchPad sensors ................................................................. 31 
3.1.1. Number of 2-D sensors............................................................................ 31 
3.1.2. Register page layout................................................................................ 32 
3.1.3. Query registers ........................................................................................ 32 
3.1.4. Control registers ...................................................................................... 35 
3.1.5. Data registers .......................................................................................... 38 
3.1.6. Interrupt Requests ................................................................................... 45 

3.2. Function $13: Scroller ......................................................................................... 45 
3.2.1. Number of scrollers.................................................................................. 45 
3.2.2. Register page layout................................................................................ 46 

 Copyright © 2007—2008 Synaptics Incorporated. All Rights Reserved. 3 



Synaptics RMI3 Interfacing Guide   PN: 511-000099-01 Rev. F 

3.2.3. Query registers ........................................................................................ 46 
3.2.4. Control registers ...................................................................................... 47 
3.2.5. Data registers .......................................................................................... 47 
3.2.6. Interrupt Requests ................................................................................... 48 

3.3. Function $14: 1-D strip and ring sensors............................................................. 49 
3.3.1. Number of 1-D sensors............................................................................ 49 
3.3.2. Register page layout................................................................................ 49 
3.3.3. Query registers ........................................................................................ 50 
3.3.4. Control registers ...................................................................................... 51 
3.3.5. Data registers .......................................................................................... 52 
3.3.6. Interrupt Requests ................................................................................... 52 

3.4. Function $18: Capacitive buttons ........................................................................ 53 
3.4.1. Number of capacitive buttons .................................................................. 53 
3.4.2. Register page layout................................................................................ 53 
3.4.3. Query registers ........................................................................................ 53 
3.4.4. Control registers ...................................................................................... 54 
3.4.5. Data registers .......................................................................................... 55 
3.4.6. Interrupt Requests ................................................................................... 56 

3.5. Function $20: Digital GPIOs................................................................................ 56 
3.5.1. Number of GPIOs .................................................................................... 56 
3.5.2. Register page layout................................................................................ 57 
3.5.3. Query registers ........................................................................................ 57 
3.5.4. Control registers ...................................................................................... 58 
3.5.5. Data registers .......................................................................................... 59 
3.5.6. Interrupt Requests ................................................................................... 60 

3.6. Function $22: Simplified LEDs ............................................................................ 60 
3.6.1. Number of LEDs ...................................................................................... 60 
3.6.2. Register page layout................................................................................ 60 
3.6.3. Query registers ........................................................................................ 61 
3.6.4. Control registers ...................................................................................... 61 
3.6.5. Data registers .......................................................................................... 64 
3.6.6. Interrupt Requests ................................................................................... 64 

4. STANDARD RMI PHYSICAL LAYERS........................................................................... 65 
4.1. I2C physical interface........................................................................................... 65 

4.1.1. I2C transfer protocols ............................................................................... 65 
4.1.2. RMI-on-I2C register addressing ............................................................... 66 
4.1.3. Block read operations.............................................................................. 67 
4.1.4. Block write operations.............................................................................. 67 
4.1.5. Synaptics module I2C protocol compliance ............................................. 68 
4.1.6. I2C electrical compliance ......................................................................... 68 

4.2. SMBus physical interface .................................................................................... 69 
4.2.1. RMI-on-SMBus register addressing......................................................... 69 
4.2.2. Page Select register ................................................................................ 70 
4.2.3. SMBus transfer protocols ........................................................................ 71 
4.2.4. Repeated starts ....................................................................................... 72 
4.2.5. Multi-register read/write operations ......................................................... 72 
4.2.6. SMBus compliance.................................................................................. 73 
4.2.7. Sample SMBus transfers ......................................................................... 74 

4.3. SPI physical interface.......................................................................................... 75 
4.3.1. SPI signals............................................................................................... 75 
4.3.2. SPI clocking............................................................................................. 75 
4.3.3. SPI transaction format ............................................................................. 76 
4.3.4. SPI attention mechanism......................................................................... 77 

4.4. Sample ControlBar product address map ........................................................... 78 
 

4 Copyright © 2007—2008 Synaptics Incorporated. All Rights Reserved. 



Synaptics RMI3 Interfacing Guide  PN: 511-000099-01 Rev. F 

1. Introduction 
This document defines a register-oriented protocol for use in Synaptics® embedded products. The overall 
protocol is known as RMI: the Register Mapped Interface. This document describes Version 3 of RMI. 
RMI uses a “register map” model that is convenient and familiar to host system developers. 

The basic goals of RMI are: 

1. To support a large and varied product line, with an emphasis on forward-, backward-, and cross-
compatibility and consistency among Synaptics products; 

2. To employ industry-standard I2C, SMBus, and SPI-based interfaces, following the familiar and 
easy-to-use “register” model that is commonly found in devices with these interfaces; and 

3. To be easy to document, easy to understand, and easy to use from the perspective of 
implementers of RMI drivers and systems incorporating RMI devices. RMI is designed so that 
any given RMI product can be documented concisely. For example, the numbering of functions 
and data sources is elaborate when considering the RMI protocol as a whole, but in each specific 
RMI device the resulting register map is straightforward and easy to use. 

Each RMI product uses a particular physical interface (I2C, SPI, or SMBus) to access a particular register 
set tailored to the product. But RMI itself is a platform protocol that ties together the common aspects of 
all physical interfaces and all register maps of Synaptics’ various embedded products. 

1.1. Conventions used in RMI documentation 
Bits within a byte, register, or other quantity are numbered with bit 0 as the least significant bit of the 
register or quantity. Ranges of bits are denoted n :m for the field of bits numbered n down to m, inclusive. 
For example, bits 7:4 comprise the most significant four bits of an 8-bit register. 

All signed quantities in RMI are expressed in two’s complement binary notation, where the most 
significant bit is taken as a sign bit. For example, a signed 8-bit byte is $00 to encode 0, $7F to encode 
+127, $80 to encode –128, and $FF to encode –1. A signed 6-bit register field would be $00 to encode 0, 
$1F to encode +31 (the largest value that can be encoded in a signed 6-bit field), $20 to encode –32 (the 
smallest value that can be encoded), and $3F to encode –1. 

For a tutorial about a particular device, or information about initiating communication, please see the 
relevant Quickstart guide. 

Note: Not all features described in this RMI Interfacing Guide are supported by every device. Consult the 
Product Specification or other device-specific documentation to find out which options are supported by a 
particular device. 
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2. The structure of RMI 
RMI, the Register Mapped Interface, is a communications interface for use with Synaptics modules. 
RMI is built upon industry-standard physical interfaces. Currently, RMI offers a choice of SPI, I2C, or 
SMBus. RMI communications involve two entities: The host, typically the main system processor, is the 
master. The device, typically a chip or module supplied by Synaptics, is a slave. 

For systems with multiple hosts or multiple devices, RMI relies on the arbitration and addressing 
mechanisms of the underlying physical interface. For example: 

• In SPI-based RMI systems with multiple devices, the host might generate a separate SSB signal 
for each device. 

• In I2C or SMBus-based RMI systems with multiple hosts, the hosts might use bus arbitration and 
repeated-Start transactions to negotiate safe shared access to a device. 

2.1. Registers 
RMI is defined in terms of logical registers. The host communicates with the device by reading and 
writing the device’s registers through physical interface transactions. 

All registers in RMI are 8 bits wide. Quantities larger than a byte are held in several consecutive registers 
which are typically read or written as a group. 

Certain multi-byte quantities may require that the host must write them as a group. For such quantities, 
writing to any byte but the last simply stores the data written in a holding area, and writing to the final 
(highest-addressed) byte of the quantity stores the byte written, plus the held data, into the multi-byte 
quantity. This restriction applies only to a rare few multi-byte quantities in RMI; most registers can be 
written as independent bytes even if they are part of larger structures. 

Similarly, certain multi-byte quantities may require that the host must read them as a group. For such 
quantities, reading from the first (lowest-addressed) byte reads the entire quantity into a holding area and 
reports the first byte of the held data. Reading any byte after the first reports the saved data from the 
holding area. This restriction applies only to a rare few multi-byte quantities in RMI; most registers can 
be read as independent bytes even if they are part of larger structures. 

Note:  Currently, RMI does not include any registers that must be read as a group in this sense. The data 
registers have their own more specialized rules for ensuring data coherency; see section 2.5.6. 

Registers are identified by 15-bit addresses. Where ‘$’ signifies hexadecimal notation, the register 
addresses range from $0000 to $7FFF. Each address in this range potentially identifies one byte of 
register data. Only a sparse few of the 32768 potential addresses are actually implemented; other 
addresses are marked reserved as defined in section 2.3. 

The register address space is divided into pages of related registers. Each page consists of 256 registers in 
the range $xx00–$xxFF. 
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2.1.1. Register map 
All RMI devices organize their registers according to the general scheme shown in Table 1. 

Address range Purpose See page 
   $0000–$00FF Standard RMI control, command, and status registers 18
       $0000     Device Control register 18
       $0001     Interrupt Enable control register 21
       $0002     Error Status register 21
       $0003     Interrupt Request status register 23
       $0004     Device Command register 23
   $0200–$02FF Standard RMI query registers 24
       $0200–$0207     General product information and version queries 25
       $0208–$020D     Product serialization queries 27
       $0210–$021F     Product ID queries 28
   $0300–$03FF Function Presence query registers 28
   $0400–$04FF Data registers 17
   $0500–$07FF Reserved for product-specific alternative data pages — 
   $0800–$0BFF Reserved for definition in future versions of RMI — 
   $0C00–$0FFF Manufacturer-defined registers — 
   $10xx–$7Fxx Function-specific register pages 29

Table 1.  RMI register map overview 

Addresses $0000–$00FF and $0200–$03FF are used for registers whose definitions are universal among 
all RMI devices. The first page contains standard control, command, and status registers, which are 
described in section 2.6. The other two pages contain standard queries, which are described in section 2.7. 

Addresses $0100–$01FF are reserved for use by each physical layer for any registers specific to the 
physical layer (if any). 

Addresses $0400–$04FF are used for data registers. Section 2.5 describes the general conventions for data 
registers, and the documentation for each function describes the specific layouts of the relevant data 
registers. 

Addresses $0800–$0BFF are generally reserved for assignment by future versions of the RMI standard. 

Addresses $0C00–$0FFF are reserved for use by the device manufacturer for proprietary registers, 
diagnostic mechanisms, etc.  

Addresses $1000–$7FFF are assigned in pages of 256 registers to various optional functions of RMI 
devices. The properties of RMI functions are described generally in section 2.2, and the various standard 
RMI functions are documented in section 3. 
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2.2. RMI functions 
The features and capabilities of an RMI device arise from one or more functions that are included in the 
device. RMI defines a standard set of functions such as 2-D TouchPad™ sensors and general-purpose 
input/output (GPIO) pins. A particular RMI-based product will include or omit each possible function 
depending on the needs of the product. Each function is largely independent of any other functions that 
might be present in the same device. 

Functions are consistently defined among all devices that include them. For example, Function $22 
always corresponds to brightness-controlled LEDs, and the registers associated with Function $22 are 
defined in a consistent way in all RMI devices that include LEDs. For devices that lack the brightness-
controlled LED function, the register addresses associated with Function $22 are unused. 

Some RMI functions are completely universal, with a fixed definition that is identical in any product that 
includes them. Other RMI functions represent more general capabilities, with parameters that may be 
chosen differently from one product to another. For example, the 1-D Sensor function (RMI Function 
$14) may involve one linear strip sensor in one product, and two closed-loop sensors in another. 

Section 3 documents all the RMI functions. 

2.2.1. Function numbers 

RMI functions are identified by an informal name and a standardized identifying number. The number for 
a function is a 7-bit integer in the range $10–$7F. 

Function numbers $7C through $7F are reserved for definition by particular products. Functions $7C–$7F 
are not required to be, and typically will not be, consistent from one RMI product to another. Instead, 
products with a unique feature not likely to appear in other products can implement this feature as 
functions in the $7C–$7F range without permanently crowding the space of standard function numbers. 
Multi-purpose drivers and diagnostic tools should treat Functions $7C–$7F as unknown, unrecognized 
functions unless they recognize the specific Product ID. 

Function numbers less than $7C are intended to be universally consistent among all RMI devices: If two 
different products both contain a function numbered $xx, this means that both contain the “same” function 
in some sense, and the behavior of function number $xx in both devices follows the same general 
specification. Synaptics Incorporated (contact: sales@synaptics.com) is responsible for maintaining a 
registry of RMI function number assignments. 

The function number forms a base address for registers associated with the function. The Function 
Presence query register for Function $xx goes at address $03xx, and any other registers that are specific 
to Function $xx go in the address range $xx00–$xxFF. For example, the Function Presence query register 
for LEDs (Function $22) has address $0322, and the other registers related to LEDs have various 
addresses in the range $2200–$22FF. 

Note: Some physical interfaces, such as the RMI implementation of SMBus, provide facilities for 
accessing common registers using 8-bit addresses (see, for example, section 4.2.1). The last address of 
each page, $xxFF, is specifically reserved for use by the physical layer. For example, RMI on SMBus 
uses this address for a Page Select register. 
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2.3. RMI physical layer operations 
This section summarizes the basic operations that are supported by every RMI physical layer. For specific 
details of the physical layers currently defined for RMI, see section 4. 

2.3.1. Writing registers 

The host may write to any N consecutive device registers starting at any register address R. The write 
transaction always “succeeds” as far as the RMI protocol is concerned. A physical layer may have limits 
on the number of consecutive registers that may be written in a single operation. See the section 
describing your selected physical layer in section 4 for more information.  

A single register write operation may not span more than one register page. In other words, the N 
consecutive registers covered by a given write operation must have addresses that differ only in the low 
8 bits. It is an error if the host performs a write operation that spans multiple pages; the effect is undefined 
and implementation-dependent. 

As a special case, a write operation that sets bit 0 of register $0004 to ‘1’ (the Reset command) must write 
only to register $0004 and only to set bit 0. Most physical layers define a holdoff time after the Reset 
command before the host can again reliably access the RMI interface. (Non-resetting writes to register 
$0004, where bit 0 is written as ‘0’, are no more constrained than other ordinary RMI write operations.) 

The end of the N-register write transaction must be an event distinguishable by the device, in order to 
support register semantics such as those described in section 3.5.4. (For example, for SPI this is the rise of 
the SSB signal.) 

2.3.2. Reading registers 

The host may read from any N consecutive device registers starting at any register address R. Each read 
transaction reports the Device Status register in addition to the requested bytes. The read transaction 
always “succeeds” as far as the RMI protocol is concerned. 

A physical layer may have limits on the number of consecutive registers that may be read in a single 
operation. See the section describing your selected physical layer in section 4 for more information. A 
single register read operation may not span more than one register page (in the sense defined above in 
section 2.3.1). 

The beginning and end of the N-register read transaction must be events distinguishable by the device, 
for reasons described in section 2.5.6. (For example, in SMBus these events are the Start and Stop 
conditions, and for SPI these are the fall and rise of the SSB signal.) 

Preferably, the physical layer will allow the host to choose to adjust dynamically the number N of 
registers that it reads based on the first few data bytes it has read. However, RMI never requires the host 
to perform a read operation of non-fixed size, because some hosts lack this ability (for example, because 
of restrictions in their OS drivers). 
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2.3.3. Signaling attention and interrupts 

The device may signal the host for attention. From the host’s point of view, the attention signal acts like a 
traditional interrupt signal. The host responds to the attention interrupt by reading the appropriate device 
registers to determine the reason for the attention request. See Section 2.5.4 for more information about 
how interrupt requests are handled in RMI. 

2.3.4. Spontaneous resets 

Every physical layer should provide for robust system operation in the presence of spontaneous resets at 
any time by either the device or the host. 

Spontaneous resets on the device side are a fact of life in many capacitive touch sensor designs. Touch 
sensors, by their nature, are more exposed than most electronics to disruption by ESD (electrostatic 
discharges) during operation, particularly if the sensor area is framed by an open bezel instead of being 
under solid, uninterrupted plastic. Synaptics chips are designed to ensure that any such disruption results 
in a clean reset of the chip. The RMI protocol is designed to allow the system to recover gracefully in the 
event of such a spontaneous device reset. Together, these designs allow robust touch sensing even in 
ESD-prone or otherwise glitchy environments. 

Spontaneous resets on the host side are also a fact of life in embedded systems. If the host restarts 
suddenly, it may not have had time to shut down the peripherals in an orderly way. An RMI device should 
be prepared to accept a “reset” command (in the case of RMI, a write of $01 to register address $0004) no 
matter what was happening earlier, even if a previous RMI physical layer transaction was interrupted 
partway through, and even if a special command or mode was already in progress on the device. 

Several properties of RMI are designed to work together to allow the host to detect reliably when the 
device has reset itself spontaneously: 

• Every data source asserts an interrupt request after reset. 

• Every implemented interrupt enable bit is ‘1’ after reset (see Section 2.6.2). 

• Therefore, the attention signal is always asserted after device reset. 

• The attention signal will prompt the host to read the data registers as if new data had arrived. 

• When the host reads the Device Status register, it will see a ‘0’ in the Configured Flag. Because 
the host knows it has already configured the device, it can infer that the device has lost its 
configuration due to a spontaneous reset. 

The host should respond to a spontaneous device reset by fully reinitializing the device. Depending on the 
nature of the overall system, the host may even wish to use a spontaneous reset in one RMI device as a 
cue to reinitialize other parts of the system. 

Hosts that operate the device in its default configuration, without ever writing to any control registers, 
will not necessarily be able to detect a spontaneous reset because the Configured Flag will always be ‘0’. 
However, these hosts need not be cognizant of spontaneous resets; from their point of view, the resetting 
device will simply pause briefly in its reporting of sensor activity and then resume normal operation. 
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2.4. Kinds of RMI registers 
Although in principle an RMI device can do anything in response to a read or a write of any register, 
RMI defines several standard types of registers with well-specified behaviors. These are described in the 
following sub-sections. 

2.4.1. Control registers 

Control registers allow the host to initialize the device and control its functions. A control register 
generally looks like a readable and writable RAM location: The host can write data to the register, and the 
host can read the current contents of the register back without side effects. 

Control registers generally do not change except when explicitly written by the host. However, this is 
merely a guideline and not a strict requirement: An RMI product or function may define control-like 
registers that change for other reasons, although often such registers might better be treated as status 
registers (see section 2.4.2). 

Each control register has a defined reset value. When the device resets for any reason, all the control 
registers revert to their reset values. 

Writing to a control register generally affects some aspect of the device’s operation, either immediately 
or at a later time. Some control registers may also have side effects upon writing. For example, some 
registers may cause the touch sensors to be recalibrated as a side effect of being written by the host, and 
some registers may cancel and restart the sensor measurement cycle (the report period of section 2.6.1) 
when written. Any such side effects are described in the documentation for the register. 

A control register typically holds some parameter that configures the device. Some parameters use 
several registers; for example, registers $1046 and $1047 together hold the Max Position parameter of a 
Function $10 sensor. Other parameters take just one or a few bits of a register; for example, register 
$0000 contains the Report Rate and Sleep Mode parameters in different bit fields of the register. 
Sometimes the fixed properties of a particular device, such as the number of strip sensors in Function $14, 
are also referred to in RMI as parameters. All the parameters (both fixed and adjustable) of an RMI 
device are together called the configuration of the device. 

Some parts of a control register may be marked reserved or “—”, and some whole registers in a group 
of control registers may be reserved. Reserved bits normally reset to ‘0’; these bits may harmlessly be 
written to ‘0’, but the behavior of the device is undefined if the host writes a reserved bit to ‘1’. For 
example, some reserved control bits may activate undocumented or proprietary features of the device 
when written to ‘1’, and those undocumented features may change without notice from one version of the 
product to another. 

Similarly, some possible settings of a control register may be marked reserved, and the behavior of the 
device is undefined if the host sets a register to a reserved value. 

Some control registers or parts of control registers are implemented only in some versions or models of a 
device. When a control register is unimplemented, it will reset to a suitable value reflecting the fixed 
behavior that is implemented in its place (for example, a fixed sensitivity setting, or a fixed ‘0’ enable bit 
for an unimplemented mode). At the implementation’s discretion, an unimplemented register or register 
bit may be treated as a query register (where writes are ignored regardless of the data written), or as a 
control register that does nothing (where writes change the contents of the register but have no other 
effect on the device). In all cases, writes to unimplemented control bits are harmless. 
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Similarly, some possible settings of a control register may be unimplemented in some versions or models 
of a device; writing a control register to a setting that is unimplemented on the device has an undefined 
effect, but the effect is generally harmless and most often corresponds to one of the implemented settings 
of the register. 

2.4.2. Status registers 

Status registers contain information that may change spontaneously to reflect the status of the device. 
They are readable by the host but ordinarily are not written by the host. It is implementation-defined 
whether a host write to a status register will visibly change the register, but in any case a write to a status 
register will have no other effect on the device. 

Reserved status bits typically read as ‘0’, but the host should ignore reserved status bits for forward 
compatibility with future RMI devices that might use these bits for additional status information. 

2.4.3. Query registers 

Query registers are read-only registers that allow the host driver to determine what kind of RMI device is 
attached and what features it includes. Most hosts in embedded systems will never need to read the query 
registers at all, but platform host drivers and diagnostic tools may find these registers useful. 

Query registers typically report constant data read from ROM on the device, but some queries may 
depend on the way the device is configured (for example, the Sensor Resolution of Functions $10 and 
$14). For more about query registers, see section 2.7. 

The host should not write to a query register, but in any case writes to query registers are ignored. 

Reserved query bits typically read as ‘0’, but the host should ignore reserved query bits for forward 
compatibility with future RMI devices that might use these bits for additional query information. 

2.4.4. Data registers 

Data registers report sensor readings and other input data to the host. Data registers can generate interrupt 
requests at certain times or at a certain rate. Reading a data register clears its interrupt request condition. 
The special structure and behavior of RMI data registers are detailed in section 2.5. 

Some parts of some data registers are marked reserved; host software should always ignore these bits. 
RMI devices typically will report ‘0’ in all reserved data register bits, but the host should not rely on this. 

2.4.5. Command registers 

Command registers allow the host to perform discrete commands or to signal discrete events on the 
device. Each bit in a command register corresponds to a possible command. The recommended way to 
use a command register is to write a byte consisting of a single ‘1’ bit in the position for the desired 
command, with ‘0’s in the rest of the bits of the byte. Thus, the byte written can be considered as a 
“command code” that happens always to be a power of two. 

Command register bits are special in that the host can only write them from ‘0’ to ‘1’: Writing a ‘0’ to a 
command bit leaves the state of the bit untouched by the write operation. Writing a ‘1’ to a command bit 
issues the command. The command bit automatically clears to ‘0’ when the command completes. 
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Some commands may complete instantaneously; their bits will never read as ‘1’. Other commands may 
take some time to complete; their bits read as ‘1’ while the command is in progress. After issuing a 
command, the host may read back the command register repeatedly, at an interval suitable for the 
command, if it wishes to see how long the command is taking to complete. Or, the host may proceed 
immediately knowing that the command will execute in due course. In many cases there is no technical 
reason that the host must know when the command completes; by allowing the host to proceed 
immediately in these cases, RMI allows host drivers to use a simple, largely “stateless” design.  

Certain command register bits may also be set to ‘1’ by the device itself. RMI does not define what 
happens if a ‘1’ is written to a command bit that is still ‘1’ from a previous posting of the same command. 
The behavior depends on the particular command and function. For this reason, the host should never read 
the command register and write back a value derived from the data that was read. Instead, the host should 
typically write a “command code” as described above. 

It is acceptable to write a ‘1’ to one command bit when other command bits are already ‘1’ due to 
previously posted, still-pending commands. The result is that several commands will be posted at once. 
The order in which the device executes these pending commands is implementation-defined, and may not 
be the same as the order in which the commands were posted. In situations where the order of command 
execution is significant, the host should read and wait until the command register becomes $00 before 
writing a new command. 

The Reset bit of command register $0004 is irregular in that the device will reset, and the RMI host 
interface will go “off the air,” when the reset command is posted. Therefore, it is not meaningful to read 
register $0004 to wait for completion of the reset command, nor to post another command at the same 
time as a reset command is pending. 

Writing $00 to a command register has no effect, and is harmless. 

Unused bits in a command register are marked reserved or unimplemented. The host must never write a 
‘1’ to a reserved or unimplemented command bit. For example, some reserved command bits may 
activate undocumented or proprietary features of the device when written to ‘1’ and these undocumented 
or proprietary features are subject to change without notice. Reserved or unimplemented command 
register bits, and wholly reserved or unimplemented command registers, are not required to behave as 
described in this section when written to ‘1’. 

2.5. Data reporting 
An RMI device may have any number of data sources. In general, a data source corresponds to one 
independent sensor or input device, but in some cases a group of similar sensors (such as an array of 
buttons) will be combined to form a single data source. 

2.5.1. Data source numbering 

In an RMI device with N data sources, the sources are numbered 0 through N–1. The data sources of each 
present function are numbered consecutively, in order of ascending function numbers. If a function 
defines several data sources, the function specification defines the order in which those sources are 
numbered within its group of consecutive data sources. Only those data sources actually present in a 
given build-time product configuration are assigned numbers. However, data source numbers for a given 
product are always fixed at run time, as are the addresses of data registers in page $04xx. 
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For example, as illustrated in Figure 1, if product A contains a 1-D strip sensor (Function $14), a group of 
capacitive buttons (Function $18), and a group of GPIOs (Function $20), these would be data sources 
0-and-1, 2, and 3, respectively. (Each 1-D strip contributes two data sources, one absolute and one 
relative.) In a product B that was like A but lacking capacitive buttons, the GPIOs would be source 2 
instead of source 3. In a product C that was like A but with two 1-D strip sensors, the two strips would be 
sources 0-and-1 and 2-and-3, respectively, the capacitive buttons would be source 4, and the GPIOs 
would be source 5. 

Product C of this example would use these fixed data source numbers even if it were a OneTouch-style 
device with the potential for two strips, each of which could be enabled or disabled at run-time. The data 
registers for a disabled strip would still be present in page $04xx, although of course they would not 
contain interesting data when their associated sensor is disabled. 

Figure 1 also illustrates the layout of the data registers on address page $04xx for these examples; data 
register addresses are described in section 2.5.5. Figure 1 assumes there are between 9 and 16 capacitive 
buttons and between 1 and 8 GPI pins, so that Function $18 has two data registers and Function $20 has 
one data register. 

 

 Product A  Product B  Product C  

Function $20  
Source 3: 
GPIO data 
Register $0407 

 Source 2: 
GPIO data 
Register $0405 

 Source 5: 
GPIO data 
Register $040C 

 

       

Function $18  
Source 2: 
Button data 
Regs $0405–$0406 

   Source 4: 
Button data 
Regs $040A–$040B 

 

       

    Source 3: 
Rel strip #1 
Register $0409 

 

    Source 2: 
Abs strip #1 
Regs $0405–$0408 

 

Source 1: 
Rel strip #0 
Register $0404 

 Source 1: 
Rel strip #0 
Register $0404 

 Source 1: 
Rel strip #0 
Register $0404 

 
Function $14  

Source 0: 
Abs strip #0 
Regs $0400–$0403 

 Source 0: 
Abs strip #0 
Regs $0400–$0403 

 Source 0: 
Abs strip #0 
Regs $0400–$0403 

 

 

 

 

 

      

Figure 1.  Numbering data sources and data registers (example) 
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2.5.2. Interrupt Request 

RMI uses interrupt requests to signal whether or not a data source has information likely to be of interest 
to the host. Exactly what constitutes an interrupt, and when and at what rate new data will arrive, depends 
entirely on the kind of input device involved. Each RMI function defines the exact rules for signaling 
interrupt requests for each of its data sources. 

Each data source maintains an independent interrupt request state bit. The Device Status register, 
described in section 2.5.3, reports the interrupt request bits either separately or in summary, depending on 
the total number of data sources in the device. 

The interrupt request bit for a data source is ‘1’ if the data source has an interrupt request, or ‘0’ if there is 
no interrupt request for the source. Once a source has an interrupt request and its interrupt request bit has 
changed to ‘1’, the interrupt request bit remains at ‘1’ until the host reads data from the source, or (in 
some products) the host takes other actions that are documented to clear the interrupt request state of the 
data source. 

The data registers always report meaningful data whether or not the interrupt request condition is present. 
Most often, an interrupt request state of ‘0’ implies that the data registers are unchanged since the last 
time the host read the data. However, some data sources may define a more selective “interrupt” criterion, 
so that certain “insignificant” data changes may occur without causing interrupt request to be asserted. 
Very simple hosts could even read the data registers by periodic polling, observing the data but 
completely ignoring the interrupt request bits and the attention signal. 

After device reset and before the data registers have been read for the first time, every data source has an 
interrupt request status of ‘1’. This is true even for data sources corresponding to sensors with a “sensor 
enable” control that resets to the “disabled” state. (The reason for this rule is explained in section 2.5.4.) 

2.5.3. Device Status register 

The Device Status register reports the overall status of the device, such as which sources have interrupt 
requests and whether or not there is an error condition. Figure 2 shows the format of the Device Status 
register. 

 
  7  6  5  4  3  2  1  0  
 Error Flag Configured Flag — interrupt 

request 4+ 
interrupt 
requ st 3 e

interrupt 
requ st 2 e

interrupt 
requ st 1 e

interrupt 
requ st 0 e         

Figure 2.  Device Status register 

The bits of the Device Status register have the following meanings: 

Interrupt request for data sources 3, 2, 1, and 0  (Device Status register bits 3:0) 
These bits report the interrupt request states of the four lowest-numbered data sources. If 
there are N< 4 data sources, the bits numbered N up through 3, inclusively, always read 
as ‘0’. 
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Combined interrupt requests for data sources 4 and above  (Device Status register bit 4) 
This bit is ‘1’ if any data source numbered 4 or higher has an interrupt request, or ‘0’ if 
none of the high-numbered data sources have interrupt requests. For devices with fewer 
than five data sources, this bit always reads as ‘0’. For devices with more than five data 
sources, this bit effectively reads the logical OR of the high-numbered interrupt request bits. 
For devices with exactly five data sources, this bit is simply the interrupt request bit for 
data source 4. 

Reserved  (Device Status register bit 5) 
This bit is reserved for definition by future versions of the RMI standard. In devices that 
conform to the present RMI standard, this bit will always read as ‘0’. 

Configured Flag  (Device Status register bit 6) 
This bit is ‘0’ on a freshly reset RMI device. This bit changes to ‘1’ upon the first host 
write to the Device Control register (address $0000), and it stays at ‘1’ forever after (or 
until the device resets again for any reason). The host can examine the Configured Flag bit 
to detect when a spontaneous reset of the device during operation has caused the device to 
lose its configuration. (Hosts that merely power up the device and use it in its default 
configuration can safely ignore the Configured Flag.) 

Error Flag  (Device Status register bit 7) 
This bit is ‘1’ if there is some kind of error on the device, or ‘0’ if there is no error. If the 
host sees a ‘1’ in the Error Flag bit, it can read the Error Status register (address $0002) to 
determine the type of error. The host’s typical response to any error is to reinitialize the 
device by rewriting the desired configuration into the device’s various control registers, 
possibly after resetting the device if appropriate. 

2.5.4. Attention signal 

The host in an RMI system is in charge of all transactions with the device. When the device has an 
interrupt request to report to the host, it uses an attention mechanism (ATTN) to alert the host that it is 
time to read the data registers. Typically, a host system will connect the attention signal to an interrupt 
input. The attention signal is merely advisory; the host is free to read the data registers at any time. The 
form of the attention signal depends on the physical interface; for example, see section 4.3.4 for a 
description of the attention signal for RMI-on-SPI. 

Synaptics can supply RMI devices in which the attention signal is active-high or active-low. The attention 
polarity is a build-time option, not run-time configurable. The attention signal is said to be asserted if it is 
in the state that alerts the host, which is high for active-high polarity or low for active-low polarity. The 
attention signal is in the de-asserted state when it is not asserted. 

The attention signaling mechanism is compatible with both level-triggered and edge-triggered interrupt 
inputs on the host. 

Register $0001 of every RMI device includes up to 8 interrupt enable bits, one bit per data source. For 
devices with more than 8 data sources, the interrupt enable bits of the higher-numbered data sources are 
held in registers in the address range $0020–$002F. Bits in registers $0001 and $0020–$002F that 
correspond to data source numbers not present in a given device are unimplemented control bits in the 
sense defined in section 2.4.1. 
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The attention signal is asserted whenever at least one data source has a ‘1’ in its bit of the interrupt enable 
mask and its interrupt request bit is also ‘1’. The attention signal may become asserted or de-asserted if 
the host writes to the control registers to change the interrupt enable bits. 

Note that most data sources continue to work, and continue to operate their interrupt request bits, even if 
their interrupt enable bit is ‘0’. The interrupt enable bit merely controls whether interrupt requests on a 
source will send an attention signal to the host. 

The host can disable attention by setting all the interrupt enable bits to ‘0’, thereby forcing the assertion 
signal to its de-asserted level. This gives the host a way to “disable interrupts” on the device side. For 
example, in a system where several devices’ attention pins have been logically OR’d together to drive a 
host interrupt pin, the host might wish to disable interrupts from some of the devices while remaining 
sensitive to other devices. 

The attention signal is always asserted after device reset. 

2.5.5. Data register page 

Each data source reports information using a consecutive group of data registers within the $04xx address 
page. A data source may have one or more data registers, always a whole number of 8-bit bytes. The 
number of registers for a data source may vary from one product to another (for example, depending on 
the number of buttons supported). But the number of data registers for each source in any given product is 
fixed, independent of any run-time mode settings. 

The data registers for data sources 0 through N–1 are assigned consecutive addresses starting at $0400. 
For example, if source 0 has 3 data registers, source 1 has 1 data register, and source 2 has 3 data 
registers, then source 0’s data registers have addresses $0400–$0402, source 1’s data register has address 
$0403, and source 2’s data registers have addresses $0404–$0406. 

The remainder of the data register page (addresses $0407–$04FF in the example above), is unused. Reads 
to these unused data page addresses always return a dummy byte of $00. 

To allow hosts to optimize their data accesses, some products may elect to provide additional data pages 
with the data sources arranged in a non-standard order, perhaps as either a build-time or a run-time 
option. For instance, in the example above, source 1’s data register might be visible at address $0500 as 
well as $0403, and source 0’s data registers might be visible at addresses $0501–$0503 as well as $0400–
$0402. However, this feature is strictly optional, and RMI tools can rely on the fact that page $04xx is 
always present and always ordered in the way defined by the RMI standard. The RMI standard itself 
merely sets aside pages $05xx–$07xx for this general type of feature in case any product wishes to include 
one. 

The act of reading any of the data registers for a data source clears the interrupt request bit for that source. 
When reading from the data register page, the reported Device Status register shows the interrupt request 
bits from before any the interrupt request bits are cleared as a result of the read operation. 
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2.5.6. Data coherence 

When a read transaction spans several data registers of a given data source, it always reads the registers 
coherently. For example, if data source 0 includes registers $0400–$0402 and the host reads all three of 
these registers in one transaction, the data reported in register $0400 will always come from the same 
measurement as the data reported in registers $0401 and $0402. 

WARNING:  If the host reads the several registers of a data source using several distinct read 
transactions, the data are not guaranteed to be coherent. For example, if registers $0404–$0405 together 
encode a 16-bit number that changes from $12F5 to $1307, a read of register $0404 followed by a 
separate read of $0405 might return the very wrong value $1207. For this reason, at least for data sources 
where coherence among register bytes can be an issue, it is strongly recommended to read related data 
registers using a single multi-byte read transaction. 

When a read transaction spans registers of more than one data source, each source will be read coherently, 
but the sources are not guaranteed to be coherent with one another. For example, if a device has two 1-D 
strip sensors as two sources, in some RMI device implementations a read transaction reading both strip 
sensors together might occasionally report older data for the first strip and newer data from a later 
measurement for the second strip. 

2.6. Standard control, command, and status registers 

2.6.1. Register $0000: Device Control register 

The Device Control register contains bits that control the pace of processing in the device, and the 
conditions under which it can enter low-power states. 

  7  6  5  4  3  2  1  0  
$0000 Report Rate — — — Sleep Mode          

Figure 3.  Device Control Register 

The bits of this register are defined as follows: 

Sleep Mode  (Device Control Register $0000, bits 2:0) 
This field controls power management on the device. This field affects all functions of the 
device together. Below are descriptions of possible sleep modes. 

 Note: Not all sleep modes are supported by every device. Consult the Product 
Specification or other device-specific documentation to find out which sleep modes are 
supported by the device. 

Sleep Mode = ‘000’:  Force Fully Awake. 
In this state, the device operates continuously, never entering a doze or 
sleep state. This mode consumes considerably more power than the others, 
and should be used only in special situations, for example in an unusual 
environment or usage pattern for which the product’s normal automatic 
power management algorithms are ill-suited. 
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Sleep Mode = ‘001’:  Normal Operation. 
In this state, the device automatically and invisibly switches between full 
operation and a doze state in which finger sensing happens at a reduced 
rate (typically a few tens of milliseconds). The doze sensing rate is chosen 
so that almost any human finger action, such as rapid tapping, will still 
perform well. 

 This setting merely authorizes the device to doze when it is able. Most 
products will be able to doze only under certain conditions, and will 
automatically remain fully awake, for example, when a finger is present or 
when pulse-width modulation for LEDs is active. 

 Most RMI devices can be left in the Normal Operation setting at all times. 

 Some Synaptics products do not support dozing; in these products, the 
Normal Operation state is identical to Force Fully Awake. 

 

Sleep Mode = ‘010’:  Low-Power Operation. 
This state is like the Normal Operation state, but with a longer doze 
sensing interval (typically a small fraction of a second) that conserves 
more power but that is likely to miss fast tapping actions. This setting may 
be preferable to Normal Operation in products whose known usage model 
never involves very rapid finger tapping gestures. 

 This Sleep Mode setting actually authorizes the device to switch 
automatically between the fully awake, normal dozing, and low-power 
dozing states depending on the pattern of sensor activity and other 
conditions. 

 Some Synaptics products do not support low-power operation; in these 
products, the Low-Power Operation state is identical to Normal Operation. 

 

Sleep Mode = ‘011’:  Very-Low-Power Operation. 
This state is like the Low-Power Operation state, but with an even longer 
doze sensing interval (typically on the order of one second) that conserves 
even more power but that is visibly slow to respond to user input after 
periods of prolonged inactivity. 

 This Sleep Mode setting actually authorizes the device to switch 
automatically between the fully awake, normal dozing, low-power dozing, 
and very-low-power dozing states depending on the pattern of sensor 
activity and other conditions. 

 Some Synaptics products do not support very-low-power operation; in 
these products, the Very-Low-Power Operation state is identical to Low-
Power Operation. 
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Sleep Mode = ‘100’:  Sensor Sleep. 
This state fully disables touch sensors and similar “analog” inputs on the 
device. All touch sensors report the “not touched” state regardless of any 
finger presence. Digital inputs, such as mechanical buttons attached to GPI 
pins, continue to operate even in the Sensor Sleep state. 

 Setting the Sleep Mode field to Sensor Sleep merely constitutes a request 
to the device to enter the sleeping state. The device may continue to 
operate in a higher-power state for a short time before it goes to sleep. In 
particular, finger presence may still be reported for one or two more report 
periods after Sleep Mode is set to Sensor Sleep. 

 All RMI devices support the Sensor Sleep state at least to the degree of 
forcing the touch sensors to the “not touched” state. In many devices, the 
Sensor Sleep state conserves additional power. In devices that do not 
support this deeper sleeping mode, the Sensor Sleep state is identical to 
Very-Low-Power Operation except for forcing the “not touched” state. 
Even then, this mode may help to conserve overall system power by 
interrupting the host less often. 

Sleep Mode = ‘101,’ ‘110,’ and ‘111’:  Reserved. 
These Sleep Modes are reserved for definition by future versions of RMI. 

 The reset state of the Sleep Mode bits depends on the device. Most products default to the 
Normal Operation state, but some (particularly those that do not implement fast tapping 
gestures) may default to the Low-Power Operation state. 

Report Rate  (Device Control Register $0000, bits 7:6) 
This field sets the report rate for the device. It applies in common to all functions on the 
device that have a natural report rate.  

 Many RMI functions divide time into report periods that occur at a report rate, roughly 
analogous to the “packet rate” of a mouse. If there are several such functions on an RMI 
device that work in terms of report periods, all the functions schedule their operation to the 
common report period of the device. 

 The encoding of the Report Rate field is largely device-dependent. The RMI standard does 
not require any particular encoding. The reset value of the Report Rate field is also device-
dependent, and corresponds to the normal or preferred report rate for the device. 

 In most Synaptics touch module products, the Report Rate values are defined as follows: 

• ‘10’ encodes 80 report periods per second,  

• ‘01’ encodes 40 report periods per second,  

• ‘00’ sometimes encodes a device-specific slower rate, and  

• ‘11’ sometimes encodes a device-specific faster rate. 

  The reset value of the Report Rate field is ‘10’ in most touch module products, but it may 
be another value such as ‘01’ in some products. 
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 RMI functions that work in terms of report periods assert interrupt requests, and therefore 
also the attention signal, at most once per report period. 

 Usually, report periods happen at a steady rate. Some conditions may cause the report 
period in progress to be canceled and a new report period started. This will not result in 
any loss of data, but it will add a visible irregularity to the steady rate of reports. For 
example, depending on the device implementation, writes to some control registers will 
cancel and restart the report period. 

 Some RMI functions do not schedule their activity in terms of report periods; these are 
known as asynchronous functions. Asynchronous RMI functions may assert an interrupt 
request on any schedule depending on the needs of the function. If an RMI device contains 
only asynchronous functions, its Report Rate field is unimplemented and resets to ‘00’ (as 
described in section 2.4.1). 

Other bits of register $0000: 
These bits are reserved for definition in future versions of the RMI protocol. 

2.6.2. Register $0001: Interrupt Enable register 

The Interrupt Enable control register determines which data sources are able to assert the attention signal. 

  7  6  5  4  3  2  1  0  
$0001 Int En ble 7 a Int En ble 6 a Int En ble 5 a Int En ble 4 a Int En ble 3 a Int En ble 2 a Int En ble 1 a Int En ble 0 a         

Figure 4.  Interrupt Enable register 

Each bit of this register controls whether the corresponding data source will assert attention when it has 
an interrupt request. Bit n of this register is ‘1’ if the interrupt request on data source n should assert 
attention, or ‘0’ if the interrupt request on source n should not affect the attention signal. See section 
2.5.4. 

Depending on the implementation, the effect on the Attention signal of a change to the interrupt enable 
bits may be either immediate or deferred until the next report period. 

Every interrupt enable bit for a present data source resets to ‘1’. Interrupt enable bits corresponding to 
not-present data sources are unimplemented and reset to ‘0’. 

Setting this field to all ‘0’ bits effectively disables the attention signal altogether. 

2.6.3. Register $0002: Error Status register 

The Error Status register reports the reason for the most recent device reset or error condition. 

  7  6  5  4  3  2  1  0  
$0002 Error Code          

Figure 5.  Error Status Register 
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If the device signals an error by reporting ‘1’ in the Error Flag bit of the Device Status register, this 
register holds an error code byte in the range $01–$7F that identifies the kind of error. If several error 
conditions arise at once, this register reports one of the extant errors; which one it reports is 
implementation-dependent. 

Error conditions created by host actions, such as invalid configurations of control bits, may be reported 
instantly or they might not be reported until a few milliseconds after the offending register was written 
(for example, error conditions might not be checked until the next report period). Similarly, if new data is 
written to the control registers to correct the error condition, it may take a few milliseconds for the Error 
Flag to clear. 

Immediately after reset but before any error has occurred, the Error Flag will be ‘0’ and the Error Status 
register will hold a reset code byte in the range $80–$FF. The reset code reports the reason that the device 
was last reset. Some RMI devices will be unable to distinguish some or all of the reset reasons, in which 
case they will report code $80 to show that the reason for the reset is unknown. 

At any other time (when at least one error condition has occurred and been corrected since reset), the 
contents of this register are undefined and uninteresting. 

RMI defines the following standard error codes and reset codes: 

Code $00:  Reserved. 
This error code is reserved for definition by future versions of RMI, although well-behaved 
RMI devices can report $00 after an error condition has been cleared. 

Code $01:  Invalid Configuration. 
This error signals a problem with the general configuration of the device, not specific to 
any one function. Many RMI devices will not implement this error at all; some devices 
might, for example, signal an error $01 if the Report Rate bits of register $0000 were set to 
an unsupported value. 

Code $02:  Device Failure. 
This error signals a hardware problem with the device, not specific to any one function. 
Many RMI devices will not implement this error at all; some devices might, for example, 
signal an error $02 if the firmware fails a CRC self-check.  

Codes $03–$0F:  Reserved. 
These error codes are reserved for definition by future versions of RMI. 

Codes $10–$7F:  Function-specific errors. 
If Function $xx signals an error, the error code $xx is reported. Exactly what constitutes an 
error condition depends on the function; a typical example would be invalid settings in the 
control registers of the function. Many functions will not implement any error conditions at 
all. 

Code $80:  Reset occurred. 
The Error Status register holds this code if no error has occurred since the last time the 
device was reset, but this RMI device does not implement reset-reason reporting so the 
exact nature of the reset is unknown. 
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Code $81:  Power-on reset. 
The Error Status register holds this value after a reset due to power cycling of the device. 

Code $82:  External reset. 
The Error Status register holds this value after a reset that happened because an external 
RESET pin was asserted. 

Code $83:  Host-initiated reset. 
The Error Status register holds this value after a reset that happened because the host 
explicitly reset the device by writing a ‘1’ to bit 0 of command register $0004. 

Code $84:  Fault reset. 
The Error Status register holds this value after a reset due to some other erroneous 
condition in the device, such as an internal firmware assertion failure. 

Code $85:  Watchdog reset. 
The Error Status register holds this value after a reset due to timeout of an on-chip 
watchdog timer in the device. 

Codes $86–$FF:  Reserved. 
These error or reset codes are reserved for definition by future versions of RMI. 

 

2.6.4. Register $0003: Interrupt Request status register 

The Interrupt Request status register reports which data sources currently have interrupt requests. 

  7  6  5  4  3  2  1  0  
$0003 Interrupt 

Request7 
Interrupt 
Request6 

Interrupt 
Request5 

Interrupt 
Request4 

Interrupt 
Request3 

Interrupt 
Request2 

Interrupt 
Request1 

Interrupt 
Request0          

Figure 6.  Interrupt Request Status Register 

Bit n of this register is ‘1’ if data source number n has an interrupt request, or ‘0’ otherwise. Note that bits 
3:0 of this register are identical to bits 3:0 of the Device Status register; register $0003 is primarily of 
interest when the device has many data sources and the host wishes to know exactly which of these 
sources have data to report. 

 

2.6.5. Register $0004: Device Command register 

The Device Command register is used to issue special commands to an RMI device. For general 
guidelines on the use and operation of command registers, see section 2.4.5. 

  7  6  5  4  3  2  1  0  
$0004 — — — — — — ReZ ro e Re et s         

Figure 7.  Device Command Register 

The bits of this register are defined as follows: 
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Reset command  (Device Command Register $0004, bit 0) 
Writing a ‘1’ to this bit causes the device to reset exactly as if its RESET pin had been 
pulled low (except possibly for reporting a different reset reason in register $0002). 

 The device’s host interface (SMBus or SPI pins) may not operate for a certain amount of 
time TRESC (about 1 ms) after a reset command or a low level on the RESET pin. This delay 
will be much shorter than the delay TPOR before the host interface begins operating after a 
power-on reset. The TRESC delay begins at the end of the write transaction that writes to 
register $0002 (for example, at the rise of SSB in the case of RMI on SPI). 

 Note: The device will assert attention as soon as it is capable of responding to an operation 
on its physical interface. 

ReZero command  (Device Command Register $0004, bit 1) 
Writing a ‘1’ to this bit causes all sensors on the device to revert to their “not touched” 
states. The host should never need to issue a ReZero command under normal conditions, 
because Synaptics devices handle zeroing completely automatically. Some hosts may wish 
to issue ReZero commands to inform the device that the physical environment has 
suddenly changed, for example, because a covering metal flap has just been lifted off the 
sensor. Depending on the particular product, the ReZero command may be instantaneous, 
or it may remain posted for several milliseconds until it is processed on the next report 
period. 

Reserved  (Device Command Register $0004, bits 2, 3 and 4) 
These command bits are reserved for definition in future versions of the RMI protocol. 

Reserved  (Device Command Register $0004, bits 5 and 6) 
These command bits are reserved for definition by the physical layer. Their meaning might 
not be consistent from one physical layer to another. 

Reserved  (Device Command Register $0004, bit 7) 
This command bit is reserved for definition by the device manufacturer, typically for use 
with undocumented diagnostic functions. Its meaning is entirely at the discretion of the 
manufacturer; it may be consistent and universal for all the manufacturer’s RMI products, 
or it may vary without notice from one version of the device to another. 

 

2.7. Standard query registers 
RMI defines a standard set of query registers that all RMI devices implement to describe the type, 
version, and capabilities of the device. The queries appear as read-only registers in address pages $02xx 
and $03xx. 

Most RMI hosts will be designed to work with a specific device, and these hosts can completely ignore 
the query registers. The standard queries are more useful for diagnostic tools that need to work with a 
wide variety of RMI devices, and for multi-purpose host drivers that must support a varied platform of 
products or systems. 
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The standard RMI queries are shown in Table 2. 

Address range Purpose 
   $0200 RMI Protocol Version query 
   $0201 Manufacturer ID query 
   $0202 Physical Interface Version query 
   $0203 Product Properties query 
   $0204–$0207 Product Info queries 
   $0208–$020D Device Serialization queries 
   $020E–$020F Reserved for future definition by RMI 
   $0210–$021F Product ID queries 
   $0220–$02FF Reserved for future definition by RMI 
   $0300–$030F Reserved for future definition by RMI 
   $0310–$037F Function Presence queries 
   $0380–$03FF Reserved for future definition by RMI 

Table 2.  RMI standard queries 

The query registers are read-only registers: They will always read the same data for a given device 
configuration, and write operations to them by the host are ignored. In some products, certain queries may 
depend on the settings of control registers or feature strapping pins on the device, but the queries will be 
constant for a given setting of the control registers or strapping pins. 

In devices that comply with the current version of RMI, queries marked reserved in Table 2 will read as 
$00 for forward compatibility with future versions of RMI. 

2.7.1. Register $0200: RMI Protocol Version query 

This byte reports the major and minor version numbers of the RMI protocol that the device implements. 
The RMI protocol version refers to the version number of the present document that the overall device 
conforms to. The RMI protocol version does not track the versions of the particular physical layer, 
particular RMI functions, or firmware on the device; these are tracked by other version queries described 
below. 

  7  6  5  4  3  2  1  0  
$0200 RMI Protocol Major Version RMI Protocol Minor Version          

Figure 8.  RMI Protocol Version Query register 

Several RMI queries report version numbers of various aspects of an RMI product. Register $0200 reports 
the version number of the RMI protocol itself; other registers report the version of the product or of a 
particular function. In general, reporting version number x.y for an aspect of RMI means that the device 
conforms to version x.y of the specification for that aspect. The various aspects’ version numbers might 
change independently; for example, for some reason a device might implement a newer version of 
Function $10 but an older version of the physical interface, or vice versa. 

RMI version numbers generally consist of two unsigned integers, major and minor. Minor, mostly 
compatible changes would generally be expressed by increasing the minor version by one, holding the 
major version the same. Major or significantly incompatible changes would generally be expressed by 
increasing the major version by one and changing the minor version back to 0 or 1. 
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The major version can be 0 to indicate a “preliminary” version of the aspect being described (the minor 
version then identifies which of several preliminary drafts pertains). The minor version can be 0 to 
indicate a “preliminary” version of a specific major version (with no way to distinguish among drafts). 
If major and minor are both non-zero, the version represents a final shipping specification. The version 
number 0.0 is never used. (Note that, while register $xx00 will probably report $00 if $xx is a not-present 
function number, register $xx00 is in this case an unimplemented register, not a true Function Version 
query register.) 

RMI diagnostic tools will display version numbers as “major.minor” where major and minor are each 
decimal integers from 0 to 15. 

2.7.2. Register $0201: Manufacturer ID query 

This byte reports the identity of the manufacturer of the RMI device. 

  7  6  5  4  3  2  1  0  
$0201 Manufacturer ID          

Figure 9.  Manufacturer ID Query register 

Synaptics RMI devices report a Manufacturer ID of $01. 

2.7.3. Register $0202: Physical Interface Version query 

This byte reports the major and minor version of the RMI physical layer. For example, in RMI-on-SMBus 
devices, register $0202 reports the version number of the SMBus interface specification contained in 
section 4.1. 

  7  6  5  4  3  2  1  0  
$0202 Physica Interface Major Version l Physica Interface Minor Version l          

Figure 10.  Physical Interface Version Query register 

The version of each physical layer is included in the specification document for the physical layer. 
Section 4 describes the standard RMI-on-I2C, RMI-on-SMBus, and RMI-on-SPI physical layers. 

2.7.4. Register $0203: Product Properties query 

This byte contains bits that describe whether the RMI product has various optional properties. 

  7  6  5  4  3  2  1  0  
$0203 Reserved for future product roperty bits p Can Doze Reserved          

Figure 11.  Product Properties Query register 

Each property bit is ‘1’ if the product has the associated property, or ‘0’ if the product does not have the 
associated property. Reserved property bits report as ‘0’, but they may report as ‘1’ in devices that 
comply with a future version of RMI. At present, only one bit of register $0203 has a defined meaning. 

Can Doze property  (Register $0203, bit 1) 
This bit is ‘1’ if the product is able to reduce the amount of power it draws in response to 
higher settings of the Sleep Mode field of register $0000. 
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2.7.5. Registers $0204–$0207: Product Info query 

These bytes report information for the product. 

  7  6  5  4  3  2  1  0  
$0204 Product Info 0                   
$0205 Product Info 1                   
$0206 Product Info 2                   
$0207 Product Info 3          

Figure 12.  Product Info Query registers 

Each byte is an unsigned integer in the range from 0 to 255. The contents of these registers are product 
specific and are specified when the product is ordered. 

2.7.6. Registers $0208–$020D: Device Serialization queries 

These six bytes optionally record the individual identity of the device. Some RMI devices are not 
serialized at the factory; for unserialized devices, all six of these bytes report $00. 

  7  6  5  4  3  2  1  0  
$0208 Date Co ear de Y Month (bit 3)                   
$0209 Date Code Month (bits 2:0) Date Code Day                   
$020A Tester ID (bits 15: ) 8                  
$020B Tester ID (bits 7:0)                   
$020C Seri l Number (bits 15:8) a                  
$020D Serial Number (bits :0) 7         

Figure 13.  Device Serialization Query registers 

The various Device Serialization queries are defined as follows: 

Date code  (Registers $0208–$0209) 
These 16 bits are intended to record the date on which the module was manufactured. The 
actual interpretation is up to the manufacturer, but RMI diagnostic tools will display this 
field assuming the bits are divided into year, month, and day fields as shown in Figure 13. 
The year code is a number from 1 to 127 to indicate years 2001–2127. The month code is a 
number from 1 to 12 to indicate the months January through December. The day code is a 
number from 1 to 31 to indicate the day of the month. The day field can be 0 to indicate 
“unknown day of the month”; the day and month fields can both be 0 to indicate “unknown 
day of the year”; the entire 16 bits can be zero to indicate “unknown manufacturing date.” 

 If the month code is $E or $F, the date code is formatted in a different way that is also 
recognized by RMI diagnostic tools. In this format, bits 5:0 of register $0209 encode a 
week number within the year. The remaining possible month code $D is reserved for future 
definition by RMI. 

Tester ID  (Registers $020A–$020B) 
These 16 bits are intended to identify the equipment used to manufacture or test the RMI 
device. The value $0000 conventionally means “unknown tester.” The actual interpretation 
of these registers is up to the device manufacturer. 
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Serial number  (Registers $020C–$020D) 
These 16 bits are intended to record a unique serial number for a given tester and day. The 
value $0000 conventionally means “no serial number recorded.” The actual interpretation 
of these registers is up to the device manufacturer. RMI diagnostic tools will display the 
tester ID and serial number in the form “tester:serial”, where tester and serial each are 
four hexadecimal digits. 

 If the Serial Number query (registers $020C–$020D) is not $0000, then the combination of 
Manufacturer ID, Product ID, Date Code, Tester ID, and Serial Number should be 
completely unique among all manufactured RMI devices. (Nothing in the RMI standard 
itself uses the serialization information, but hosts and tools may rely on this uniqueness 
property when the Serial Number is non-zero.) 

2.7.7. Registers $0210–$021F: Product ID queries 

These bytes report the identity of the particular RMI device or product. 

  7  6  5  4  3  2  1  0  
$0210 Product ID, character 1                   
$0211 Product ID, character 2                   
$0212 Product ID, character 3          
⋅ ⋅ ⋅ ⋅ ⋅ ⋅          

$021D Product ID, character 14                   
$021E Product ID, character 15                   
$021F $00          

Figure 14.  Product ID Query registers 

These registers form a null-terminated string that identifies the product. If the string is of length N 
characters, then registers $0210 through $0210 + N – 1, inclusive, encode printable ASCII characters in 
the range from $20 to $7E, and registers $0210 + N through $021F, inclusive, are $00. 

The form of the Product ID string depends on the product manufacturer. The exact Product ID format for 
Synaptics products will vary from one product family to another. For custom touch sensing modules, the 
Product ID currently is of the form, for example, “TM605” or “TM605-2”, but this format is subject to 
change in the future.  

2.7.8. Registers $0310–$037F: Function Presence queries 

This group of registers can be used to identify all functions present on a device. The low 8 bits of the 
register address correspond to a function number from $10 to $7F. Function Presence query register 
$03xx is $00 if Function $xx is not present on the device, or it is a non-$00 value if Function $xx is 
present. 

The Function Presence query register for each present function is formatted as follows: 

  7  6  5  4  3  2  1  0  
$0 xx 3 SFPL Num Data Sources Num Extra Data Regi ters s         

Figure 15.  Function Presence Query register (if Function $xx is present) 
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Num Extra Data Registers  (Register $03xx, bits 3:0) 
Each data source contributes at least one data register to the function. If Num Data Sources 
is non-zero, then bits 3:0 of the Function Presence Query register report the total additional 
number of data registers defined by the function beyond the assumed one data register per 
data source, as an integer from 0 to 15. Thus, (Num Data Sources + Num Extra Data 
Registers) is the total number of data registers defined by the function. 

 If Num Data Sources is zero, then the function must necessarily have no data registers, and 
bits 3:0 of the query instead report $F. If the number of data sources or the number of data 
registers is too large to be represented in this format, bits 6:4 instead report zero and bits 
3:0 report $E. Note that bits 6:0 of the Function Presence Query are guaranteed to be not-
all-zero for any present function. 

Num Data Sources  (Register $03xx, bits 6:4) 
These bits of the Function Presence Query register report the total number of data sources 
defined by the function in the current product, as an integer from 0 to 7. 

Special Function Page Layout  (Register $03xx, bit 7) 
If this bit is ‘1’ for Function $xx, then RMI diagnostic tools can assume that the register 
page $xx00–$xxFF has a somewhat standardized layout as described in section 2.8. If this 
bit is ‘0’, the function-specific register page is irregular and tools should make no 
assumptions unless they specifically recognize the function number. 

Note:  RMI informally reserves the address range $0380–$03FF in case a future extension of RMI 
doubles the range of function numbers. 

RMI devices must return $00 when the host reads any address in the $0310–$037F range corresponding 
to a function that is not present in the device. 

Diagnostic tools and multi-purpose host drivers can use the defined properties of the Function Presence 
Query registers to enumerate all the functions present on an unknown device, and to correctly interpret 
the bits of the Device Status register and the data registers of page $04xx even if they do not recognize 
some of the included functions. (Note that if any Function Presence query reports $0E in bits 6:0, 
diagnostic tools will not be able to interpret the device’s data without recourse to outside information 
about the device.) 

 

2.8. Function-specific registers 
Function number $xx is associated with a page of 256 registers whose 15-bit addresses are $xx in their 
high 7 bits. For example, register addresses $1400–$14FE are reserved for definition by Function $14. 

However, a function can set the Standard Function Page Layout bit (bit 7) of its Function Presence query 
(see section 2.7.8) to indicate that it follows certain conventions about the layout of its register page. 
Diagnostic tools and platform drivers may be able to use this fact to provide a basic interface to functions 
they do not recognize. 
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If the Standard Function Page Layout bit is ‘1’ for Function $xx, then registers $xx00–$xxFF generally 
follow the conventions shown in Table 3. 

Address range Purpose 
   $xx00 Function Version query 
   $xx01–$xx3F Other function-related queries 
   $xx40 Command register, if present 
   $xx41–$xx7F Control and status registers 
   $xx80–$xxFE Other registers 
   $xxFF Reserved for use by the physical interface 

Table 3.  Standard function page layout 

If the Standard Function Page Layout bit is ‘0’ for Function $xx, or if Function $xx is not present, then 
tools should not assume anything about the contents, purpose, or behavior of registers $xx00–$xxFF. 
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3. Standard RMI functions 
This section describes the RMI functions currently defined by Synaptics. 

The standard function numbers are shown in Table 4. 

Function Purpose See page 
$10 2-D sensors (TouchPads) 31
$13 Scroller (typically used with TouchPad) 45
$14 1-D sensors (strips and rings) 49
$18 Capacitive buttons 53
$20 Digital GPIOs (including mechanical buttons) 56
$22 Simplified LEDs 60

$40–$79 Reserved — 
$7C–$7F Reserved for unique/specialty devices — 

Table 4.  Standard function numbers 

These standard RMI functions are described in the following sections. 

 

3.1. Function $10: 2-D TouchPad sensors 
Function $10 implements one or several two-dimensional touch position sensors, such as Synaptics 
TouchPad™ or ClearPad™ products. 

3.1.1. Number of 2-D sensors 

A Function $10 device may include any number of 2-D sensors. The sensors are identified by consecutive 
numbers starting with 2-D sensor #0. Each 2-D sensor can have up to three data sources: the first data 
source reports the absolute finger position, the second data source reports the relative finger motion, and 
if the sensor has a relative data source and supports the ‘Enhanced Gestures’ feature, a third data source 
reports the current gesture state. 

The Num Data Sources field of register $0310 expresses how many distinct 2-D sensors are present in the 
device. When Function $10 is present with 1 or 2 2-D sensors, its Num Data Sources value can range 
from 1 through 6, depending upon the features available in this device. If Function $10 has more than 7 
data registers, its register $0310 will be $8E, indicating that the standard queries are unable to express the 
number of 2-D sensors (see section 2.7.8). Tools that operate a device with more than 7 data registers 
must rely on information beyond the device’s own queries to interpret the device. 

When more than one 2-D sensor is present in the device, all the 2-D sensors operate independently. Each 
2-D sensor reports its data in separate data registers with separate interrupt request and interrupt enable 
bits. Each 2-D sensor’s properties are described by a separate set of queries, and each 2-D sensor is 
configured by a separate set of control registers.  
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3.1.2. Register page layout 

Function $10 implements the Standard Function Page Layout, as shown in Table 5. 

Address range Purpose 
   $1000 Function Version query 
   $1001 General 2-D Properties query 
   $1002–$1009 Queries for 2-D sensor #0: 
       $1002–$1003     Sensor Properties 
       $1004–$1005     Sensor X Max Position 
       $1006–$1007     Sensor Y Max Position 
       $1008     Sensor Resolution 
       $1009     Reserved for future definition 
   $100A–$1011 Queries for 2-D sensor #1 
   $1012–$1019 Queries for 2-D sensor #2 
   $101A–$103F Reserved for future definition 
   $1040 Reserved for future command register 
   $1041 General 2-D control register 
   $1042 Gesture control 
   $1043 Reserved   
   $1044–$1047 Sensor control registers for 2-D sensor #0: 
       $1044     Sensor Sensitivity 
       $1045     Minimum Distance 
       $1046–$1047     Sensor Max Position 
   $1048–$104B Sensor control registers for 2-D sensor #1 
   $104C–$104F Sensor control registers for 2-D sensor #2 
   $1050–$107F Reserved for future control registers 
   $1080–$10FF Reserved for future definition 

Table 5.  Function $10 register page 

3.1.3. Query registers 

Register $1000 reports the version number of the Function $10 specification that the device implements. 
  7  6  5  4  3  2  1  0  

$1000 Function major version Function minor vers on i         

Figure 16.  Function $10 Version query register 

Register $1001 contains general information about the 2-D sensor function. 
  7  6  5  4  3  2  1  0  

$1001 — — — — — — — —          

Figure 17.  Function $10 General 2-D Properties query register 

All bits of this query are reserved. 

Registers $1002–$1019 describe information about each of up to three 2-D sensors. For devices with 
fewer than three 2-D sensors, the query registers corresponding to higher-numbered 2-D sensors are 
unused and read as $00. For devices with more than three 2-D sensors, the higher-numbered sensors 
might not be described by device queries. 
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The queries for a given 2-D sensor are shown in Figure 18: 
 

  7  6  5  4  3  2  1  0  
$1002 — — — — — — — —                   
$1003 — — Has 2D 

Scrollers Has Scroller Has Enhanced 
Ges res tu

Has Multi 
Fin er g

Has Palm 
Detect 

Has No 
Relative Data                   

$1004 — — — Sensor X Max Position (bits 12:8)                   
$1005 Sensor X Max Position ( its 7:0) b                  
$1006 — — — Sensor Y Max Position (bits 12:8)                   
$1007 Sensor Y Max Position ( its 7:0) b                  
$1008 S nsor Resolutio  e n                  
$1009 — — — — — — — —          

Figure 18.  Function $10 per-sensor query registers (addresses shown for sensor #0) 

 

The contents of these registers are defined as follows:  

Has No Relative Data  (Register $1003+8*N, bit 0) 
This bit is ‘1’ if the device does not have a relative data source, or ‘0’ if the device has a 
relative data source. (See section 3.1.5.2 for information about relative data registers.) 

Has Palm Detect  (Register $1003+8*N, bit 1) 
This bit is ‘1’ if the device is capable of measuring finger width, or ‘0’ if not. (See the 
Width data register field in section 3.1.5.) 

Has MultiFinger  (Register $1003+8*N, bit 2) 
This bit is ‘1’ if the device is capable of counting the number of fingers on the pad, or ‘0’ if 
not. (See the Sensor Status data register field in section 3.1.5.1 for more information.) 

Has Enhanced Gestures (Register $1003+8*N, bit 3) 
This bit is ‘1’ if the device is capable of supporting enhanced gestures, or ‘0’ if not. (See 
section 3.1.5.3, for information about the gestures supported by the relative data registers.) 

Has Scroller  (Register $1003+8*N, bit 4) 
If this bit is ‘1’, there is a Function $13 in the device that represents either a mechanical 
scroll wheel, or a scrolling zone or strip, associated with this 2-D sensor. By convention, 
the Nth 2-D sensor with a ‘1’ bit in either of these bits is associated with the Nth data 
source of Function $13. 

 If the 2-D sensor has a separate (non-virtual) scroll strip associated with it, the designer of 
the device may elect either to associate the strip with the 2-D sensor in the same way as a 
virtual scrolling zone (above), or to treat the strip as a separate 1-D sensor. The former case 
is more appropriate if the strip is to be used strictly as a relative scroller. The latter case 
allows the host to obtain absolute position and Z data for the strip. In the latter case, the 
2-D sensor’s Has Scroller bit will be ‘0’, and the 1-D sensor will be treated as an 
independent Function $14 in the device. 
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Has 2D Scrollers  (Register $1003+8*N, bit 5) 
If this bit is ‘1’, the 2-D sensor is associated with two consecutively-numbered data sources 
of Function $13 which combine to report general two-dimensional scrolling deltas; the first 
of these two sources always reports horizontal scrolling, and the second always reports 
vertical scrolling. If the Has 2D Scrollers bit is ‘0’, then either the scroller is only able to 
scroll in one axis (vertical scrolling only), or it can scroll in only one axis at a time (disjoint 
horizontal and vertical virtual scroll zones on the same pad); in this case, a single scroller 
data source is used. 

Many RMI devices, such as custom-designed TouchPad modules, have sensors with a known physical 
size and aspect ratio. On these devices, each 2-D pad has X Max Position, Y Max Position, and Sensor 
Resolution queries that report the physical properties of the pad. These queries are computed as a function 
of the Max Position control registers. If the host writes to the Max Position registers, it may take up to 
two report periods (as defined in section 2.6.1) to recalculate the X Max Position, Y Max Position, and 
Sensor Resolution queries; those query registers’ contents are untrustworthy for up to that much time after 
any write to Max Position. The data registers for the pad are also untrustworthy for up to two report 
periods after any change to Max Position. 

X Max Position and Y Max Position  (Registers $1004+8*N – $1007+8*N) 
These queries describe the largest values that will be reported in the X Position and 
Y Position data registers, respectively. The X and Y Positions are always scaled the same 
as each other in units-per-millimeter terms, so that a 100-unit change in X Position 
represents the same physical distance on the pad as a 100-unit change in Y Position. 

 If the pad has landscape orientation (in other words, it is wider than it is high, like a 
traditional TouchPad mounted in a laptop computer), then X Max Position is the same as 
Max Position, and Y Max Position is a smaller number depending on the aspect ratio of the 
2-D pad. For a portrait-oriented pad (one that is mounted with the sensor higher than it is 
wide), Y Max Position is the same as Max Position, and X Max Position is smaller. For a 
perfectly square pad, both X Max Position and Y Max Position are equal to Max Position. 

Sensor Resolution  (Register $1008+8*N) 
This query reports the scale of the X and Y Position values, measured in position units per 
millimeter, rounded to the nearest 8-bit unsigned integer. If the calculated resolution would 
exceed 255 units per millimeter, the Sensor Resolution query reports 255. 

Thus, if X Width represents the known physical X-axis width of the sensor active area in millimeters, and 
Y Height represents the physical Y-axis height in millimeters, then the queries are calculated as: 

 X Max Position = (Max Position) * (X Width) / max(X Width, Y Height); 
 Y Max Position = (Max Position) * (Y Height) / max(X Width, Y Height); 
 Sensor Resolution = X Max Position / X Width = Y Max Position / Y Height. 

The X Width and Y Height values are not directly reported in Function $10 queries, but the host can 
derive them from the other queries by solving the above equations, as follows: 

 X Width = X Max Position / Sensor Resolution; 
 Y Height = Y Max Position / Sensor Resolution. 
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If Sensor Resolution is on the order of 100 units per millimeter, then these formulas will yield width and 
height values accurate to about 1%. The aspect ratio of the sensor is simply the ratio of X Width to 
Y Height, or, equivalently, the ratio of X Max Position to Y Max Position. 

In other RMI devices, such as Synaptics OneTouch™ products, the device firmware does not know the 
physical size and aspect ratio of the sensor. In such devices, the X Max Position, Y Max Position, and 
Sensor Resolution query registers are unimplemented and all reset to $00 for each 2-D pad on the device. 
For purposes of the definitions below, the X Max Position and Y Max Position of such a device are both 
equal to the Max Position control register value. 

3.1.4. Control registers 

Register $1041 contains global settings that control all of the 2-D sensors together, and Register $1042 
contains gesture controls. Register $1043 is reserved for future use: 
 

  7  6  5  4  3  2  1  0  
$1041 — — No Filter — Reduced 

Reporting No Clip Z — — 
                  

$1042 Flick Time Flick Distance Press Time                    
$1043 Reserved           

Figure 19.  Function $10 General 2-D Control registers 

Register $1041 resets to $00, and can be left at its reset setting in most applications. Its bits are defined as 
follows: 

No Clip Z  (Register $1041, bit 2) 
If this bit is ‘0’ (the default setting), then when the Sensor Status field of the data registers 
reports no finger present, the Z data register is forced to zero and the Position data registers 
report the last valid finger position. 

 If this bit is set to ‘1’, then capacitance readings too small to qualify as a finger may still 
report a non-zero Z. Depending on the physical design of the sensor, this mode may allow 
a limited form of proximity detection. However, if Reduced Reporting (Register $1041, bit 
3) is ‘0’, it will cause the sensor to report interrupt requests occasionally when no real 
finger is near, which may interfere with power management in the host system. 

Reduced Reporting (Register $1041, bit 3) 
If this bit is set to ‘0’, a sensor asserts the ATTN interrupt at a nominal 80 Hz rate for the 
entire duration that one or more fingers is present on the sensor. The Minimum Distance 
setting (Register $1045) is ignored when Reduced Reporting is disabled. This is the default 
behavior for a sensor. 

 Setting this register to '1' means that sensors will assert their ATTN interrupt only when a 
finger has traveled a distance greater than or equal to the Minimum Distance setting in 
either the X or Y direction.  

 The table below outlines the differences in behavior: 
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 Minimum Distance = 0 Minimum Distance ≥ 1 
Sensor Device 
supports multiple 
fingers 

ATTN asserted each time an 
additional finger lands (the finger 
count changes), and the sensor 
status does not indicate a 
transitional finger (it is not equal 
to '111'). ATTN also asserted 
each time that any finger leaves. 

In addition to changes in the sensor 
status value, ATTN is asserted when 
the first and/or second finger has 
traveled a distance equal to or greater 
than the Minimum Distance setting in 
either the X or Y direction. 
 

Sensor Device 
does not support 
multiple fingers 

ATTN asserted once when a 
finger lands (sensor status 
changes from '000' to '001'), and 
once again when the finger 
leaves (sensor status changes 
from '001' to '000'). 

In addition to changes in the sensor 
status value, ATTN is asserted when a 
finger has traveled a distance equal to 
or greater than the Minimum Distance 
setting in either the X or Y direction.  

Sensor Device 
does not support 
Enhanced 
Gesture 
Reporting 

If a user taps the sensor, the 
ATTN interrupt is asserted 
whenever the gesture bit changes 
state. 

If a user taps the sensor, the ATTN 
interrupt is asserted whenever the 
gesture bit changes state. 

Table 6.  Attention signal assertion 

 See the description of Register $1045, below, for more information about the Minimum 
Distance feature. See Section 2.5.4 for more information about attention signals. 

No Filter  (Register $1041, bit 5) 
If this bit is set to ‘1’, then the position filtering (if any) that the sensor normally applies to 
its X Position and Y Position data is disabled. This may cause the position values to be 
more jittery or susceptible to electrical noise, but it may be advantageous to set No Filter in 
unusual applications for which the standard filtering performs poorly. 

The bits of Register $1042 contain the following gesture controls: 

Press Time (Register $1042, bits 2:0) 
This field sets the time limit for a long press gesture. A long press is recognized if the 
finger remains down for over the time limit: 

• ‘000’: 300  ms 
• ‘001’: 400  ms 
• ‘010’: 500 ms 
• ‘011’: 600 ms 
• ‘100’: 700 ms 
• ‘101’: 800 ms 
• ‘110’: 900 ms 
• ‘111’: 1000 ms 
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Flick Distance (Register $1042, bits 5:3) 
This field sets the distance range for recognizing a flick gesture. In order to achieve a flick 
gesture, the finger must move a specific distance: 

• ‘000’: 4   mm 
• ‘001’: 5   mm 
• ‘010’: 6   mm 
• ‘011’: 7  mm 
• ‘100’: 8  mm 
• ‘101’: 9  mm 
• ‘110’: 10  mm 
• ‘111’: 11  mm 

Flick Time (Register $1042, bits 7:6) 
This field sets the time limit to recognize a flick gesture: 

• ‘00’: 250  ms 
• ‘01’: 400  ms 
• ‘10’: 550  ms 
• ‘11’: 700  ms 

         
Reserved  (other bits of register $1041, Register $1043) 

These bits are reserved for definition by future versions of RMI Function $10. 

Registers $1044–$104F control the operation of up to three 2-D sensors. For devices with more than 
three 2-D sensors, the higher-numbered 2-D sensors are configured in a device-dependent way. For 
devices with fewer than three 2-D sensors, the higher-numbered control registers in this range are 
unimplemented and reset to $00. 
 

  7  6  5  4  3  2  1  0  
$1044 Sensitivity Adjust                   
$1045 M nimum Distanc  i e                  
$1046 — — — Max Position (bits 12:8)                   
$1047 Ma  Position (bits 7 0) x :         

Figure 20.  Function $10 per-sensor 2-D Control registers (addresses shown for sensor #0) 

The contents of these registers are defined as follows: 

Sensitivity Adjust (Register $1044+4*N) 
This register resets to $00, and can be left at its reset setting in most applications. It holds a 
signed 8-bit integer, where positive values increase the sensitivity to light touches, and 
negative values decrease the sensitivity to firm touches. The Sensitivity Adjust value is 
scaled in the same units as those of the Z data register. 

Minimum Distance  (Register $1045) 
This register resets to $00 and can be left at its reset value for most applications. The 
settings for this register are only used if the Reduced Reporting bit of register $1041 is set 
to ‘1’; if Reduced Reporting is ‘0’, then any Minimum Distance settings are ignored. 
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 If the Reduced Reporting bit is ‘1’, and the Minimum Distance setting is greater than 0, 
then the point at which an ATTN interrupt is asserted is determined by the Minimum 
Distance amount. Typically, there is a 1:1 relationship between the Minimum Distance 
value and a change in absolute finger position in either the X or Y direction. If needed, 
customers may request a “multiplier” to Minimum Distance values. For example, if the 
device is a large TouchPad with a large Max Position value (registers $1046 and $1047), a 
multiplier of 2 or 3 could be applied. The Minimum Distance multiplier is device-specific 
and is set when the device is manufactured.  

Max Position  (Registers $1046+4*N – $1047+4*N) 
This parameter sets the largest value that the X and Y Position registers are permitted to 
report, as an unsigned integer from $0002 to $1FFF. The behavior of the device is 
undefined if Max Position is set to a number less than $0002. 

 The actual reporting ranges are indicated by the X and Y Max Positions, described above 
in section 3.1.3. The Max Position control register resets to a device-dependent default. 
For devices with a known physical sensor size (such as custom modules), the default Max 
Position is chosen if possible to cause the default Sensor Resolution to come to around 
80 units per millimeter (around 2000 units per inch). For devices that do not know the 
physical sensor size (such as Synaptics OneTouch products), the Max Position control 
register generally defaults to $1FFF, the largest representable range.  

After any change to the Max Position or Sensitivity Adjust registers for a pad, the data registers for the 
pad should be considered untrustworthy for up to the next two report periods. 

3.1.5. Data registers 

Each 2-D sensor in Function $10 can have one, two, or three data sources: 

• The first data source reports the absolute finger position on the sensor.  

• If a 2-D sensor has a relative data source (Register $1003 bit 0 is ‘0’), then the second data source 
reports relative finger motion.  

• If a 2-D sensor has a relative data source (Register $1003 bit 0 is ‘0’) and supports the ‘Enhanced 
Gestures’ feature (Register $1003 bit 3 is ‘1’), the third data source reports the current gesture 
state for that 2-D sensor. If the device does not have a relative data source, gesture data is 
reported as the second data source. 

The host may choose to read a subset of the data source registers if it desires only one kind of data. The 
host may also choose to set the interrupt enable bit for a subset of the potential data source interrupts if 
it is only interested in being alerted to the corresponding type of finger activity.  

For example, a host that plans to read the absolute data registers could set either the absolute or the 
relative interrupt enable bit depending on whether it wishes to be interrupted continuously when the 
finger is present, or only when the finger moves appreciably. A host that was only interested in knowing 
where the finger was when a tap gesture was performed could enable just the gesture interrupt enable bit. 
This would prevent a stream of interrupts from the absolute data source if a finger was touching the pad, 
but not tapping. Absolute, relative, and gesture data registers are described in the subsections below. 
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3.1.5.1. Absolute data registers 

The absolute data source for a 2-D sensor has six data registers, as shown in Figure 21. 
  7  6  5  4  3  2  1  0  

R 0 + Width  Ges ure t Sensor Status                   
R 1 + Z                   
R 2 + — — — X Position (bits 12:8)                   
R 3 + X Position (bits 7: ) 0                  
R 4 + — — — Y Position (bits 12:8)                   
R 5 + Y Position (bits 7: ) 0         

Figure 21.  Function $10 data registers for absolute 2-D position source 

The fields of these data registers are defined as follows: 

Sensor Status  (Register R+0, bits 2:0) 
This field reports the number of fingers present on the sensor. Not all Synaptics 2-D pads 
implement multiple-finger counting. For those that do not implement finger counting (i.e., 
those that report Has Multi Finger = ‘0’ in the queries), any number, one or more, of 
fingers will be reported as Sensor Status ‘001’, and the status values ‘010’ and ‘011’ will 
never be reported. Multi-finger contact on such devices will usually lead to a larger-than-
usual reported Width value.  

Sensor Status = ‘000’:  No finger. 
This value indicates that there is no finger present on the sensor. 

Sensor Status = ‘001’:  One finger. 
This value indicates that there is one finger present on the sensor. 

Sensor Status = ‘010’:  Two fingers. 
This value indicates that there are two fingers present on the sensor. 

Sensor Status = ‘011’:  Three or more fingers. 
This value indicates three or more fingers present on the sensor. 

Sensor Status = ‘100’, ‘101’, ‘110’:  Reserved. 
These values are reserved for use by future versions of RMI Function $10. 

Sensor Status = ‘111’:  Transitional finger count. 
This value indicates that the number of fingers on the pad is indistinct, 
typically because a second or third finger has just touched down or just 
lifted from the pad. The X and Y Positions may jump discontinuously 
during a report period that reports Sensor Status ‘111’; hosts that do their 
own relative motion computations based on the reported absolute positions 
should suppress motion due to these discontinuous jumps. 

 Some Synaptics products may generate discontinuous jumps in reported 
position for other reasons; these products may report a Sensor Status of 
‘111’ to signal a discontinuous jump in position even if the reason is 
unrelated to multiple fingers. 
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Gesture  (Register R+0, bit 3) 
This bit is ‘1’ if the “virtual mouse button” is currently “clicked” due to a tap, double-tap, 
or tap-and-slide gesture. Hosts that wish to implement tapping gestures can logically OR 
this bit into the signal representing that a “mouse button” is currently pressed. Hosts 
uninterested in tapping gestures, or that do their own tap gesture detection, can safely 
ignore the Gesture bit.  

 Note: This bit is unused and is set to ‘0’ if the firmware includes Enhanced Gesture 
Recognition (indicated when the Has Enhanced Gestures (query Register $1003+8*N, bit 
3) bit is set). 

Width  (Register R+0, bits 7:4) 
This field reports the estimated finger width as an unsigned integer, where 0 represents an 
extremely narrow finger and 15 represents an extremely wide contact such as a palm laid 
flat on the sensor. If no finger is touching the pad, Width reports 0. If more than one finger 
is touching the pad, the value reported for Width is unpredictable. 

 Not all Synaptics 2-D pads implement finger width detection. For those that do not 
implement finger width (for example, those that report Has Palm Detect = ‘0’ in the 
queries), the Width field will report 0 regardless of the kind of finger contact. 

Z  (Register R+1) 
This field reports the amount of finger contact or finger signal strength, which often serves 
as a rough estimate of finger pressure. The calculation of Z is inherently approximate; 
actual reported Z values will vary from one pad to another and from one user to another. In 
fact, because capacitance is influenced by environmental effects such as the moisture of the 
skin, Z measurements can even vary from day to day for the same device and user. 

 Although Z is used to determine finger presence, if a measure of finger pressure is not 
required, the Z value can be ignored and the Sensor Status field of the first data byte can be 
used to determine finger presence using the device’s built-in algorithms. 

 When Z = 0, the position cannot be measured and the X and Y Position registers are left 
unchanged. By default Z is taken as 0 whenever the device’s built-in algorithms determine 
that no finger is present. If the No Clip Z bit of register $1041 is set to ‘1’, then positive 
but very small Z values will be reported when the device measures a faint capacitance 
signal; in this case, the position will be reported but it may not be very accurate. 

X Position  (Register R+2 bits 12:8, Register R+3 bits 7:0) 
This field reports the horizontal position of the finger on the pad. It always reports a value 
between $0000 and the value of the X Max Position query, inclusive. If the X Position is 
$0000, the finger is somewhere to the left of the leftmost extreme of the sensitive area. 
If the X Position is equal to X Max Position, the finger is somewhere to the right of the 
rightmost extreme. (Not all 2-D sensors are capable of sensing these extreme values; those 
that cannot, will never report an X Position equal to $0000 or X Max Position.) If the 
X Position is a value in the range from $0001 to (X Max Position – 1), it indicates the 
position of the finger within the sensor active area, where $0001 represents the left extreme 
and (X Max Position – 1) represents the right extreme. 
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Y Position  (Register R+4 bits 12:8, Register R+5 bits 7:0) 
This field reports the vertical position of the finger on the pad. It always reports a value 
between $0000 and the value of the Y Max Position query, inclusive. If the Y Position is 
$0000, the finger is somewhere below the bottommost extreme of the sensitive area. If the 
Y Position is equal to Y Max Position, the finger is somewhere above the uppermost 
extreme. (Not all 2-D sensors are capable of sensing these extreme values; those that 
cannot, will never report a Y Position equal to $0000 or Y Max Position.) If the Y Position 
is a value in the range from $0001 to (Y Max Position – 1), it indicates the position of the 
finger within the sensor active area, where $0001 represents the bottommost extreme and 
(Y Max Position – 1) represents the uppermost extreme. 

When no finger is present on the sensor, the X and Y Positions report the last known valid finger position. 

3.1.5.2. Relative data registers 

The relative data source for a 2-D sensor has two data registers, as shown in Figure 22. Note that not all 
sensors support relative motion. If a 2-D sensor has a relative data source (the Register $1003 bit 0 is set 
to ‘0’), then the second data source reports relative finger motion. 

  7  6  5  4  3  2  1  0  
R 0 + X Delta                   
R 1 + Y Delta          

Figure 22.  Function $10 data registers for relative-2-D-motion source 

These data registers are applicable only for the first finger. These data registers are defined as follows: 

X Delta  (Register R+0) 
This byte reports the amount of horizontal finger motion during a reporting period, as a 
signed 8-bit integer where a positive X Delta represents rightward motion (toward 
increasing absolute X Positions). 

Y Delta  (Register R+1) 
This byte reports the amount of vertical finger motion, where a positive Y Delta represents 
upward motion (toward increasing absolute Y Positions). 

The delta registers accumulate motion until the host reads the delta registers. The motion accumulators 
report +127 or –128 if so much motion occurs between host reads that the registers overflow their 8-bit 
signed range. 

Note:  The device may implement the relative motion accumulators as “sticky” 8-bit signed integers, 
which hold at +127 or –128 once reaching either of those values until they are cleared by reading. Or, the 
accumulators may be implemented as larger accumulators whose values are clipped to +127 or –128 
when expressed in the data registers; in this case, they will not appear “sticky” if an overflowing motion 
is countered by a reverse motion before the host reads the data registers. 

Any read transaction that reads at least one register of the relative data source (those registers shown in 
Figure 22) clears the X and Y Delta accumulators. Thus, reading relative data registers twice in rapid 
succession is likely to return $00 deltas on the second read. Note that this means the X and Y deltas must 
be read in a single multi-byte read transaction; if separate one-byte read transactions were used for these 
two bytes, the second delta byte would be cleared to $00 before it was read. 
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3.1.5.3. Gesture data registers 

Note: Some sensors do not support gestures. Consult the Product Specification to find out which gestures, 
if any, are supported by the device. 

The gesture data source for a 2-D sensor has two data registers, as shown below. Some sensors do not 
support gestures. If a 2-D sensor supports the ‘Enhanced Gestures’ feature (the Register $1003 bit 3 is set 
to ‘1’), the third data source reports the current gesture state for that 2-D sensor. 
 

  7  6  5  4  3  2  1  0  
R 0 + Confi med r —  Pinch Fli k c Press TapCode                   

Y Magnitude for Flick (7:4) X Magnitude for Flick (3:0) 
R+1 0R Pinch 

Dire tion c — — 
         

Figure 23.  Function $10 data registers for a gesture data source 

These data registers are applicable only for the first finger, and are defined as follows: 

TapCode  (Register R+0, bits 2:0) 
This field encodes several tap-related gestures, as follows: 
0 = No gesture 
1 = Single Tap 
2 = Tap and Hold (Tap and Slide) 
3 = Double Tap (codes 4 – 7 are Reserved) 

TapCode 1 (Single Tap) 
This code indicates that the sensor has detected a tap gesture, a rapid finger 
press and release with minimal position change while the finger is touching the 
sensor. When a tap occurs, the TapCode becomes ‘1’ and remains so until: 

o The gesture changes (for example to a tap and hold gesture), 
o The gesture data source is read after Confirmed is ‘1’, in which case both  

Confirmed and TapCode revert to ‘0’, or 
o A new gesture has occurred (in this case the host was very slow to 

respond to an interrupt). 

TapCode 2 (Tap and Hold) 
This code indicates that the sensor has detected a tap and hold gesture, a tap 
event that is rapidly followed by a finger press-and-hold. When a tap and hold 
occurs, the TapCode becomes ‘2’ and remains so until: 

o The gesture changes (for example to a double tap), 
o The finger is lifted, or 
o A new gesture has occurred (in this case the host was very slow to 

respond to an interrupt). 
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TapCode 3 (Double Tap) 
This code indicates that the sensor detected a double tap gesture, two taps that 
occur in rapid succession. When a double tap occurs the TapCode becomes ‘3’ 
and remains so until one of the following occurs: 

o The gesture data source is read after Confirmed is ‘1’, in which case both 
Confirmed and TapCode revert to ‘0’, or 

o A new gesture has occurred (in this case the host was very slow to 
respond to an interrupt). 

Press  (Register  R+0, bit 3) 
This bit is ‘1’ if the sensor has detected a press gesture.  A press gesture is defined to be a 
finger that lands, and then stays in the same approximate position for approximately 500ms 
or longer (a period significantly greater than would be expected for a tap gesture). When a 
press occurs the Press bit will become ‘1’ and remain set until one of the following occurs: 

• The finger moves. 
• The finger is lifted. 

The Confirmed flag is always set for this gesture. 

Flick  (Register R+0, bit 4) 
This bit is ‘1’ if the sensor has detected a flick gesture. A flick gesture is defined to be a 
rapid finger press and release, similar to a tap, but with a significant change in position 
between the press location and release location. If the Flick bit is ‘1’, the direction and 
magnitude of the flick is reported in the X & Y Magnitude fields of the second data 
register. When a flick occurs the flick bit will become ‘1’ and remain set until one of the 
following occurs: 

• The gesture data source is read. 
• A new gesture occurred (in this case the host was very slow to respond to an interrupt). 

A flick can only occur when a single finger is detected. The X and Y Magnitude fields 
contain flick information only when the Flick flag is set. The Confirmed flag is always set 
for this gesture. 

Pinch  (Register R+0, bit 5) 
This bit is ‘1’ if the sensor has detected a pinch gesture. A pinch gesture is defined to be a 
simultaneous two-fingered gesture involving a user’s thumb and forefinger, where the two 
fingers are either moving towards each other, or moving away from each other. If the Pinch 
bit is ‘1’, the direction of the pinch is reported in the Pinch Direction field of the second 
data register (see below). When a pinch occurs, the Pinch bit will become ‘1’ and will 
remain set until one of the following occurs: 

• The gesture data source is read. 
• A new gesture occurs (in this case the host was very slow to respond to an interrupt). 

A pinch can only occur when exactly two fingers are present. The Pinch Direction field 
contains pinch information only when the Pinch flag is set. The Confirmed flag is always 
set for this gesture. 
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Confirmed  (Register R+0, bit 7) 
This bit is ‘1’ to indicate that a gesture is confirmed. This is helpful to hosts that either lack 
or do not want to use the resources to perform timing since some gestures occur over a 
period of time. When the Confirmed bit is ‘1’ it indicates that all criteria necessary for this 
gesture (including timing) have been met. Once the confirmed flag becomes ‘1’ it will 
remain set until one of the following occurs: 

• In the case of a single tap, double tap or a flick gesture, the gesture data source is read. 
• A new gesture occurred (in this case the host was very slow to respond to an interrupt). 
If register R+0 is non-zero, but the Confirmed bit is ‘0,’ it indicates that a gesture has 
started and been initially identified, but may evolve into a different gesture after additional 
finger activity or time. 

Y Magnitude and X Magnitude (Register R+1, bits 7:4 and 3:0), or Pinch Direction (bit 7) 
These fields report the X and Y magnitudes of the current flick gesture or the Pinch 
direction of the current pinch gesture, if there is one. The X and Y Magnitude values are 
$00 whenever there is no flick gesture in effect. The values reported in these fields are 
signed relative motion rather than an actual distance. As the names suggest, the Y 
Magnitude field indicates the component of the flick that was in the vertical direction, 
while the X Magnitude field indicates the component of the flick that was in the horizontal 
direction.  

 Both X and Y Magnitudes report values in the range –7..+7, which are described below: 

o –7 a fast flick along the negative X or Y axis. 
o –1 a slow flick along the negative X or Y axis. 
o +1 a slow flick along the positive X or Y axis. 
o +7 a fast flick along the positive X or Y axis. 

 For Pinch Direction, a value of ‘0’ indicates fingers moving apart; a value of ‘1’ indicates 
fingers moving closer together. Bits 6 through 0 of the second register contain undefined 
values during a pinch gesture. The host may make its own interpretation of the meaning of 
Pinch Direction to suit its particular needs. Some possible meanings might be: 

o Pinch Direction ‘0’ = increase the volume. 
o Pinch Direction ‘1’ = decrease the volume. 

Or: 

o Pinch Direction ‘0’ = make the image larger. 
o Pinch Direction ‘1’ = make the image smaller. 
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3.1.6. Interrupt Requests 

The absolute data source of a 2-D sensor asserts an interrupt request on every report period for which at 
least one finger is present, or when a finger is sufficiently close so that Z > 0. In the default mode, Z > 0 
only if a finger is present and thus Sensor Status is non-zero. However, if the No Clip Z mode bit is set, Z 
> 0 may merely indicate a finger proximity that is not enough for Sensor Status to report as a true finger. 
The absolute data source also asserts an interrupt request on any report period for which Z changes to zero 
from a non-zero value (for example, when the finger lifts off the pad). 

If the 2-D sensor supports relative data, the relative data source asserts an interrupt request on every 
report period that adds a non-zero amount of motion to the X Delta and/or Y Delta motion accumulators. 
Note that because interrupt request bits are sticky, an interrupt request will remain at ‘1’ even if a later 
backward finger motion subtracts the deltas down to zero again by the time the host reads the deltas; 
therefore, the host should be prepared occasionally to see ($00, $00) deltas even when an interrupt request 
is reported. Conversely, some finger motions might not generate X and Y Deltas in some products; for 
example, finger motion in a virtual scroll zone will generate deltas on the associated scroller instead of on 
the 2-D pad’s relative data source. 

If the 2-D sensor supports Enhanced Gesture Recognition, the gesture data source asserts an interrupt 
request on each new gesture event. 

 

3.2. Function $13: Scroller 
Function $13 implements a purely relative scrolling function, typically attached to a 2-D TouchPad™ 
(Function $10) sensor. However, Function $13 could be used to describe any input device, such as a 
mechanical wheel, that expresses relative scroll-like motions but not absolute position. 

3.2.1. Number of scrollers 

A Function $13 device may include any number of scrollers. The scrollers are identified by consecutive 
numbers starting with scroller #0. Each scroller has one data source. 

The Num Data Sources field of register $0313 expresses how many distinct scrollers are present in the 
device. If Function $13 has more than seven scrollers, its register $0313 will be $8E, indicating that the 
standard queries are unable to express the number of scrollers (see section 2.7.8). Tools that operate a 
device with more than seven scrollers must rely on information beyond the device’s own queries to 
interpret the device. 
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3.2.2. Register page layout 

Function $13 implements the Standard Function Page Layout, as shown in Table 7. 

 

Address range Purpose 
   $1300 Function Version query 
   $1301 General Scroller Properties query 
   $1302–$1309 Scroller-specific properties queries 
   $130A–$133F Reserved for future definition 
   $1340 Reserved for future command register 
   $1341–$1348 Sensor-specific control registers 
   $134A–$137F Reserved for future control registers 
   $1380–$13FF Reserved for future definition 

Table 7.  Function $13 register page 

3.2.3. Query registers 

Register $1300 reports the version number of the Function $13 specification that the device implements. 
  7  6  5  4  3  2  1  0  

$1300 Function major version Function minor vers on i         

Figure 24.  Function $13 Version query register 

Register $1301 contains general information about the scroller function. 
  7  6  5  4  3  2  1  0  

$1301 — — — — — — — —          

Figure 25.  Function $13 General Scroller Properties query register 

All bits of this query are reserved. 

Registers $1302 through $1309 contain specific information about up to eight scrollers. Register 
$1302 + N describes scroller #N. If the device has fewer than eight scrollers, the higher-numbered queries 
in this group are reserved. If the device has more than eight scrollers, the higher-numbered scrollers might 
not be described by queries. 

  7  6  5  4  3  2  1  0  
$1302 — — — — — — — —          

Figure 26.  Function $13 per-scroller query registers (address shown for scroller #0) 

In the present version of Function $13, all bits of this query are reserved. 
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3.2.4. Control registers 

Registers $1341–$1348 control the operation of up to eight Scroller sensors. For devices with more than 
eight Scroller sensors, the higher-numbered Scroller sensors are configured in a device-dependent way. 
For devices with fewer than eight Scroller sensors, the higher-numbered control registers in this range are 
unimplemented and reset to $00. 
 

  7  6  5  4  3  2  1  0  
$1341 — — — — — — EdgeMotion Tap Enable 

Figure 27.  Function $13 per-Sensor Scroller Control register 

This register resets to $03, and can be left at $03 in most applications. These bits are defined as follows: 

Tap Enable  (Register $1341 + N, bit 0) 
This bit is set to ‘1’ to enable tapping gesture. When enabled, tapping at the end zone of 
the scroller sensor will either increase or decrease the Scroll Delta value, depending on 
which end zone is being tapped. Tapping on the left end or top end zone will decrease the 
value of Scroll Delta while tapping on the right end or bottom end zone will increase the 
Scroll Delta value. 

EdgeMotion  (Register $1341 + N, bit 1) 
If this bit is set to ‘1’, EdgeMotion is enabled on the device. When a finger stays at the end 
zone of the scroller sensor after a swipe or after a press and hold of some duration, 
enabling EdgeMotion will either increase or decrease Scroll Delta value depending on the 
location of the end zone. For example, when a finger swipes to the left and stays on the left 
end zone of the scroller, Scroll Delta will keep decreasing until after the finger is lifted up. 

Function $13 also uses the standard RMI interrupt enable control bits (see section 2.6.2) in a special way. 
For scrollers that report a virtual scrolling zone on a 2-D pad, the interrupt enable bit for the scroller 
enables the scroll zone itself: If interrupt enable is ‘0’ for the scroller, then the entire 2-D pad area is used 
for relative motion sensing, but if interrupt enable is ‘1’ for the scroller, then certain finger motions within 
a designated zone on the 2-D pad generate scrolling deltas instead of relative motion deltas. 

 

3.2.5. Data registers 

Function $13 includes one data source for each scroller present in the device. Each data source defines a 
single data register, as shown in Figure 28: 

  7  6  5  4  3  2  1  0  
R 0 + Inc Scroll Horiz croll S Scroll Delta          

Figure 28.  Function $13 data register for scroller 
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The fields of this data register are defined as follows: 

Scroll Delta  (Data Register, bits 5:0) 
This field is a signed 6-bit number in the range –32 through +31 indicating a relative 
amount of scrolling. A positive value represents “forward” scrolling, such as downward 
vertical scrolling or rightward horizontal scrolling. 

 The scale of the scroll delta for incremental scrolling (such as a tap, a tap-and-hold, or one 
detent of a wheel) is product-dependent. The scale of the scroll delta for continuous 
scrolling also depends on the particular device. 

Horiz Scroll  (Data Register, bit 6) 
This bit is ‘1’ if the scrolling operation specifies horizontal scrolling, or ‘0’ if the operation 
specifies vertical scrolling or does not specify a direction. 

 Some scrollers, such as linear scroll strips, will report always horizontal scrolling or always 
vertical scrolling. Others, such as 2-D pads with right- and bottom-edge virtual scroll 
zones, are able to report scrolling in either direction in response to different inputs. 

Inc Scroll  (Data Register, bit 7) 
This bit is ‘1’ if the scrolling is due to an incremental action, such as a tap gesture, a press 
and hold, a scroll wheel with detents, or an “up” or “down” button. This bit is ‘0’ if the 
scrolling is due to a continuous action such as a swipe in a virtual scroll zone, scroll strip, 
or ring. 

 Some scrollers, such as up/down buttons, will always report incremental motion; others, 
such basic scroll strips, will always report continuous motion. Other scrollers may generate 
both kinds of motions in response to different inputs; for example, a scroll strip that 
enables tapping gestures or EdgeMotion to scroll by increments. 

The scroll delta register accumulates motion until the host reads the scroller data register. The scrolling 
accumulator reports +31 or –32 if so much scrolling occurs between host reads that the register overflows 
its 6-bit signed range. The device may implement the scroll delta as being backed by a larger accumulator 
with a wider range, whose value is clipped to a –32 to +31 range for reporting in the data register. 

Any read transaction that reads the scroller data register clears the scroller’s delta accumulator. Thus, 
reading the scroll data register twice in rapid succession is likely to return a $00 delta on the second read. 

3.2.6. Interrupt Requests 

The data source of a scroller asserts an interrupt request on every report period that adds a non-zero 
amount to the Scroll Delta accumulator. Note that because interrupt request bits are sticky, an interrupt 
request will remain at ‘1’ even if a later backward scrolling action subtracts the delta down to zero again 
by the time the host reads the delta; therefore, the host should be prepared occasionally to see a $00 delta 
even when an interrupt request is reported. 
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3.3. Function $14: 1-D strip and ring sensors 
Function $14 implements one or several one-dimensional touch position sensors, such as Synaptics 
ScrollStrip™ or ring sensor products. 

3.3.1. Number of 1-D sensors 

A Function $14 device may include any number of 1-D sensors. The sensors are identified by consecutive 
numbers starting with 1-D sensor #0. 

Each 1-D sensor has two data sources. The first data source reports the absolute finger position, and the 
second data source reports the relative finger motion. 

The Num Data Sources field of register $0314 expresses how many distinct 1-D sensors are present in the 
device. When Function $14 is present with 1, 2, or 3 1-D sensors, its Num Data Sources value will be 2, 
4, or 6, respectively. If Function $14 has more than three 1-D sensors, its register $0314 will be $8E, 
indicating that the standard queries are unable to express the number of 1-D sensors (see section 2.7.8). 
Tools that operate a device with more than three 1-D sensors must rely on information beyond the 
device’s own queries to interpret the device. 

For example, in a device with two 1-D sensors, source 0 is absolute position for 1-D sensor #0, source 1 is 
relative motion for 1-D sensor #0, source 2 is absolute position for 1-D sensor #1, and source 3 is relative 
motion for 1-D sensor #1. 

When more than one 1-D sensor is present in the device, all the 1-D sensors operate independently. Each 
1-D sensor reports its data in separate data registers with separate interrupt request and interrupt enable 
bits. Each 1-D sensor’s properties are described by a separate set of queries, and each 1-D sensor is 
configured by a separate set of control registers. 

3.3.2. Register page layout 

Function $14 implements the Standard Function Page Layout, as shown in Table 8. 

Address range Purpose 
   $1400 Function Version query 
   $1401 General 1-D Properties query 
   $1402–$1409 Sensor-specific properties queries 
   $140A–$143F Reserved for future definition 
   $1440 Reserved for future command register 
   $1441 General 1-D Control register 
   $1442–$1443 Reserved  
   $1444–$1453 Sensor-specific control registers 
   $1454–$147F Reserved for future control registers 
   $1480–$14FF Reserved for future definition 

Table 8.  Function $14 register page 
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3.3.3. Query registers 

Register $1400 reports the version number of the Function $14 specification that the device implements. 
  7  6  5  4  3  2  1  0  

$1400 Function major version Function minor vers on i         

Figure 29.  Function $14 Version query register 

Register $1401 contains general information about the 1-D sensor function. 
  7  6  5  4  3  2  1  0  

$1401 — — — — — — Info Layout Multi Sense          

Figure 30.  Function $14 General 1-D Properties query register 

The fields of this register are defined as follows: 

Multi Sense  (Register $1401, bit 0) 
For RMI devices with more than one 1-D sensor, the Multi Sense bit reports whether the 
device is able to sense finger contact on more than one 1-D sensor at once. If the Multi 
Sense bit is ‘1’, each 1-D sensor of Function $14 operates effectively independently; if the 
Multi Sense bit is ‘0’, only one 1-D sensor at a time will report finger contact. For devices 
with only one 1-D sensor, the Multi Sense bit is always ‘0’. 

Info Layout  (Register $1401, bit 1) 
This bit is ‘1’ if the Info Orient and Info Location bits of the various 1-D sensors of 
Function $14 are reliable. This bit is ‘0’ if the layout and orientation of the sensors is 
unknown when the device was built, and thus the Info Orient and Info Location bits are not 
reliable. 

Registers $1402–$1409 describe information about each of up to four 1-D sensors. For devices with fewer 
than four 1-D sensors, the query registers corresponding to higher-numbered 1-D sensors are unused and 
read as $00. For devices with more than four 1-D sensors, the higher-numbered sensors might not be 
described by device queries. 

The queries for a given 1-D sensor are shown in Figure 31: 
  7  6  5  4  3  2  1  0  

$1402 — — Info Location Info oop L Info Orient Has Multi Fing Has Palm Det —                   
$1403 S nsor Resolutio  e n         

Figure 31.  Function $14 per-sensor query register (addresses shown for sensor #0) 

The Has Multi Finger and Has Palm Detect bits are defined in the same way as for Function $10, and the 
Sensor Resolution is computed from Max Position in a way analogous to Function $10. As in Function 
$10, the Sensor Resolution is $00 for devices with unknown physical dimensions. The remaining are 
defined as follows: 

Info Orient  (Register $1402 + 2*N, bit 3) 
For closed-loop sensors, the Info Orient bit is ‘0’ if the loop path is substantially circular, 
or ‘1’ if the loop path is oval or otherwise non-circular. For open strip sensors, the Info 
Orient bit is ‘1’ if the strip is substantially vertical, or ‘0’ if the strip is horizontal (or 
otherwise non-vertical). 

50 Copyright © 2007—2008 Synaptics Incorporated. All Rights Reserved. 



Synaptics RMI3 Interfacing Guide  PN: 511-000099-01 Rev. F 

 

Info Loop  (Register $1402 + 2*N, bit 4) 
This bit is ‘1’ if the 1-D sensor is a closed loop, or ‘0’ if the sensor is an open-ended strip. 

Info Location  (Register $1402 + 2*N, bit 5) 
This bit is ‘1’ if this sensor is generally below and maybe to the left of the previous sensor, 
or ‘0’ if this sensor is generally to the right of the previous sensor. This bit allows the host 
to roughly determine the arrangement of the sensors, such as a horizontal row, a vertical 
column, or a 2 × 2 array of sensors. The Info Location bit of 1-D sensor #0 is always ‘0’. 

3.3.4. Control registers 

Registers $1441–$1443 control the operation of the 1-D sensors. When multiple 1-D sensors are present, 
these registers control all of them identically. 
 

  7  6  5  4  3  2  1  0  
$1441 — — No Filter — — No Clip Z No Decel —                   
$1442 Reserved                    
$1443 Reserved           

Figure 32.  Function $14 General 1-D Control registers 

Register $1441 resets to $00, and can be left at $00 in most applications. Its bits are defined in the same 
way as those of Function $10 register $1041. Note that if a device contains both 2-D pads and 1-D strips, 
all the pads on the device are controlled together by register $1041, and all the strips on the device are 
controlled together by register $1441. 

Registers $1444–$1453 control the operation of up to four 1-D sensors. For devices with more than four 
1-D sensors, the higher-numbered 1-D sensors are configured in a device-dependent way. For devices 
with fewer than four 1-D sensors, the higher-numbered control registers in this range are unimplemented 
and reset to $00. 
 

  7  6  5  4  3  2  1  0  
$1444 Sensitivity Adjust                   
$1445 — — — — — — — —                   
$1446 — — — Max Position (bits 12:8)                   
$1447 Ma  Position (bits 7 0) x :         

Figure 33.  Function $14 per-sensor 1-D Control registers (addresses shown for sensor #0) 

The Sensitivity Adjust and Max Position registers are defined analogously to the per-sensor control 
registers of Function $10. 
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3.3.5. Data registers 

Each 1-D sensor of Function $14 has two data sources, the first reporting the absolute finger position and 
the second reporting relative finger motion. 

The absolute data source for a 1-D sensor has four data registers, as shown in Figure 34. 

  7  6  5  4  3  2  1  0  
R 0 + Width  Ges ure t Sensor Status                   
R 1 + Z                   
R 2 + — — — Position (bits 12:8)                   
R 3 + Position (bits 7:0)          

Figure 34.  Function $14 data registers for absolute-1-D-position source 

The Width, Gesture, Sensor Status, Z, and Position fields are defined analogously to the corresponding 
data fields of the Function $10 absolute data source. 

For strip sensors, the Position is equal to $0000 or Max Position when the finger is past the limits of the 
sensor area; not all strips will be able to sense these positions. The Position is between $0001 and (Max 
Position – 1) when the finger is touching the strip. The position $0000 corresponds to the leftmost or 
bottommost end of the strip if the device is a product to be mounted in a known orientation. For products 
(such as Synaptics OneTouch) whose orientation is not known by the device firmware, Position $0000 
corresponds to the lowest-numbered sensor electrode. 

For closed-loop sensors, the Position is equal to $0000 when the finger is at the twelve o’clock position 
on the loop (for products with a known orientation) or when the finger is over the lowest-numbered 
sensor electrode (for products with unknown orientation). The Position values range from $0000 to Max 
Position, inclusive, where the position values $0001 and Max Position are immediately adjacent to 
position $0000. The Position values increase from $0000 with motion in a clockwise direction (for 
products with a known sensor electrode layout) or toward higher-numbered sensor electrodes (for 
products with unknown layout). 

The relative data source for a 1-D sensor has one data register, as shown in Figure 35. 

  7  6  5  4  3  2  1  0  
R 0 + Delta          

Figure 35.  Function $14 data registers for relative-1-D-position source 

The 1-D sensor Delta is defined analogously to the corresponding data field of the Function $10 relative 
data source. A positive Delta represents increasing Position values as defined above. Any read transaction 
that reads the relative data source register shown in Figure 35 clears the Delta accumulator. Thus, reading 
the relative data register twice in rapid succession is likely to return a $00 delta on the second read. 

3.3.6. Interrupt Requests 

Generally speaking, the data sources of a 1-D sensor assert an interrupt request under analogous 
conditions to those of a Function $10 2-D sensor. 
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3.4. Function $18: Capacitive buttons 
Function $18 implements a group of capacitive buttons. 

3.4.1. Number of capacitive buttons 

A Function $18 device may include up to 255 capacitive button sensors. The sensors are identified by 
consecutive numbers starting with button #0. 

Regardless of the number of capacitive buttons, Function $18 always has exactly one data source that 
reports the states of all the buttons. However, the number of data registers in the data source varies 
depending on the number of buttons, as described below. 

3.4.2. Register page layout 

Function $18 implements the Standard Function Page Layout, as shown in Table 9. 
 

Address range Purpose 
   $1800 Function Version query 
   $1801 Number of Capacitive Buttons query 
   $1802–$183F Reserved for future definition 
   $1840 Reserved for future command register 
   $1841–$1842 General Button Control registers 
   $1843–$187F Reserved for future control registers 
   $1880–$18FF Reserved for future definition 

Table 9.  Function $18 register page 

3.4.3. Query registers 

Register $1800 reports the version number of Function $18 that the device implements. 
 

  7  6  5  4  3  2  1  0  
$1800 Function major version Function minor vers on i         

Figure 36.  Function $18 Version query register 

Register $1801 reports the number of capacitive buttons on the device. 
 

  7  6  5  4  3  2  1  0  
$1801 Numbe  of Capacitive Buttons r         

Figure 37.  Function $18 Number of Capacitive Buttons query register 

The Number of Capacitive Buttons field is an integer from 1 to 255 reporting the number of capacitive 
buttons present. 
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3.4.4. Control registers 

Registers $1841–$1842 control the operation of the capacitive buttons. 
  7  6  5  4  3  2  1  0  

$1841 — Button Usage Heavy Filtering — — — —                   
$1842 Sensitivity Adjust          

Figure 38.  Function $18 General Button Control registers 

These registers each reset to $00, and can be left at $00 in most applications. Their bits are defined as follows: 

Heavy Filtering  (Register $1841, bit 4) 
Capacitive buttons are always filtered to reduce the effects of electrical noise. If this bit is 
set to ‘1’, the device applies an extra-heavy filtering algorithm to all the capacitive buttons.  

Notes: The majority of button products should never require enabling this feature. For 
systems that may produce excessive amounts of electrical noise, enabling this feature may 
help distinguish button events from electrical noise. Enabling the Heavy Filtering feature 
will modestly impact the responsiveness of the capacitive buttons. This impact may affect 
the speed at which button presses are registered, the speed at which button releases are 
registered, and/or the ability to catch fast taps on the buttons. 

Button Usage  (Register $1841, bits 6:5) 
This two-bit field provides guidance about how the capacitive buttons are expected to be 
used in typical operation of the device: 

Button Usage = ‘00’:  Unrestricted usage. 
This value indicates that the user may touch the buttons in any combination. 

Button Usage = ‘01’:  Not all buttons at once. 
This value indicates that the user might touch multiple buttons at once, but the 
user would never be expected to touch all the capacitive buttons at the same 
time during correct operation of the device. 

 This setting is strictly advisory; the device is permitted to implement button 
usage ‘01’ in exactly the same way as button usage ‘00’. 

 However, some devices with more than one capacitive button may use button 
usage settings ‘01’, ‘10’, and ‘11’ as a cue to reject or recalibrate to capacitance 
measurements that affect all buttons at once. This cue may help reduce the 
buttons’ sensitivity to hover, accidental palm contact, and environmental 
changes such as temperature drift. 

 When button usage is ‘01’, ‘10’, or ‘11’, the capacitive button data registers 
may report unpredictable data if all buttons are touched simultaneously. Also, if 
this simultaneous touch is more than brief, then the button data may remain 
unpredictable for as long as any buttons remain touched thereafter. However, 
every Function $18 implementation must be able to recover quickly and resume 
correct operation once all fingers have been removed from the buttons. 
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Button Usage = ‘10’:  Strongest button only. 
This value indicates that the user is expected to touch only one capacitive 
button at a time. At most one button’s data bit will be reported as ‘1’ in this 
mode. If the finger is near several buttons at the same time, the device will 
attempt to choose the button with the strongest finger signal. 

Button Usage = ‘11’:  First button only. 
This value indicates that the user is expected to touch only one capacitive 
button at a time. At most one button’s data bit will be reported as ‘1’ in this 
mode. If the finger is near several buttons at the same time, the device will 
attempt to choose the first button that was touched for as long as that button 
remains touched. If the first button touched is lifted while other buttons are still 
touched, it is undefined which of the still-touched buttons will be reported next. 

 Button usages ‘10’ and ‘11’ are advisory in the sense that some devices might not fully 
implement the “strongest button” or “first button” rules. In such devices, button usages 
‘10’ and ‘11’ may be treated the same. However, all Function $18 devices must ensure that 
no more than one button data bit is reported as ‘1’ at the same time whenever the Button 
Usage field is set to ‘10’ or ‘11’.For devices with only one capacitive button, the Button 
Usage field is effectively ignored. 

Button Sensitivity Adjustment  (Register $1842) 
This register is a signed 8-bit byte whose usage is analogous to the sensitivity adjustment 
of RMI Function $10. It affects all the capacitive buttons of the device together. It can be 
left at $00 in most cases. 

3.4.5. Data registers 

Function $18 always has one data source. The number of data registers in the data source varies 
depending on the number of buttons. If there are 1–8 buttons, Function $18 has one data register. If there 
are 9–16 buttons, Function $18 has two data registers. In general, if there are N buttons, Function $18 has 
int((N+7) / 8) data registers. 

Buttons 7–0 are reported in bits 7:0 of the first capacitive button data register. Buttons 15–8 are reported 
in bits 7:0 of the second data register, buttons 23–16 are reported in the third data register, and so on. In 
general, button N is reported in bit (N mod 8) of data register number int(N / 8). 

Each bit in the capacitive button data registers is ‘1’ if the button is being touched, or ‘0’ if the button is 
not being touched. 

The data registers of a capacitive button sensor are shown in Figure 39, with the example of 18 buttons. 
  7  6  5  4  3  2  1  0  

R+0 Bt 7 n Bt 6 n Bt 5 n Bt 4 n Bt 3 n Bt 2 n Bt 1 n Bt 0 n                  
R+1 Btn15 Btn 4 1 Btn13 Btn 2 1 Btn 1 1 Btn 0 1 Bt 9 n Bt 8 n                  
R+2 — — — — — — Btn 7 1 Btn16          

Figure 39.  Function $18 data registers for capacitive buttons (for example of 18 buttons) 

Note that if a device includes both mechanical and capacitive buttons, these are treated in RMI as two 
separate Functions with two separate data sources and data registers. 
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3.4.6. Interrupt Requests 

Function $18 asserts an interrupt request on its data source whenever any button bit changes from a ‘0’ to 
a ‘1’ or from a ‘1’ to a ‘0’. Because an interrupt request is a “sticky” bit, interrupt requests read as ‘1’ if 
any button bit has changed since the last time the data registers were read, even if the button bit has 
changed back to its previous value since that time. An interrupt request is asserted synchronously with the 
report rate of other capacitive sensors in the device. 

3.5. Function $20: Digital GPIOs 
Function $20 implements a group of general-purpose digital input/output pins, as might be used for input 
buttons, simple LED control, and so on. The GPIO facility supports two distinct models: 

• In the non-integrated model of GPIOs, the GPIs and GPOs are treated as completely separate 
facilities. A device may have only GPIs, or only GPOs, or some of each type. GPI #N is usually a 
different, unrelated chip pin to GPO #N, and if a pin is both a GPI and a GPO, its GPI number 
and GPO number need not be the same. The non-integrated model is well-suited to special-
purpose custom modules that want to have straightforwardly numbered mechanical button inputs 
as well as straightforwardly numbered LED outputs. 
 
Note:  The non-integrated model, as defined, is flexible enough to encompass practically any 
combination of GPI, GPO, and GPIO functionality. In practice, care should be taken when 
specifying an RMI device to avoid confusing choices. For example, if a certain pin is both a GPI 
and a GPO, it is best to assign it equal GPI number and GPO number even though this is not 
strictly required. Some GPIO combinations may not be supported in a given product line; for 
example, current Synaptics firmware supports only the integrated model and a “strict” non-
integrated model in which each pin is either a GPI or a GPO, never both. 

• In the integrated model of GPIOs, the GPIs and GPOs are simply the input and output functions 
of the same set of pins. GPI #N reports the input voltage sampled on pin #N, and GPO #N 
controls the output voltage driven onto the same pin #N. The integrated model is well-suited to 
general-purpose products that can benefit from maximum flexibility. 

3.5.1. Number of GPIOs 

A Function $20 device may include up to 240 GPIs and up to 240 GPOs. The GPIs are identified by 
consecutive numbers starting with GPI #0, and the GPOs are identified separately by consecutive 
numbers starting with GPO #0. (If the device follows the integrated GPIO model, GPI numbering and 
GPO numbering coincide; in the non-integrated model, GPI numbering and GPO numbering are 
completely separate.) 

A device might contain only GPIs, in which case the number of GPOs is zero. A device might also have 
only GPOs, in which case the number of GPIs is zero. (Function $20 itself would be present only if at 
least one GPI or GPO exists.) 

If there are no GPIs, then Function $20 has no data sources. If there are one or more GPIs, Function $20 
has exactly one data source that reports the states of all the GPIs. The number of data registers in the data 
source varies depending on the number of GPIs, as described below. 
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3.5.2. Register page layout 

Function $20 implements the Standard Function Page Layout, as shown in Table 10. 

Address range Purpose 
   $2000 Function Version query 
   $2001–$2003 General GPIOs queries 
   $2004–$203F Reserved for future definition 
   $2040 Reserved for future command register 
   $2041 General GPIO Control register 
   $2042–$207F GPO control registers 
   $2080–$20FF Reserved for future definition 

Table 10.  Function $20 register page 

3.5.3. Query registers 

Register $2000 reports the version number of the Function $20 specification that the device implements. 
  7  6  5  4  3  2  1  0  

$2000 Function major version Function minor vers on i         

Figure 40.  Function $20 Version query register 

Registers $2001–$2003 report the number of GPIOs on the device, and their overall properties. 
  7  6  5  4  3  2  1  0  

$2001 — — — — — — GPI Polarity Integrated                   
$2002 Number of GPIs                   
$2003 Number of GPOs          

Figure 41.  Function $20 General GPIOs query registers 

The bits of these registers are defined as follows: 

Integrated  (Register $2001, bit 0) 
This bit is ‘1’ if the GPIOs use the integrated model, or ‘0’ if the GPIOs use the non-
integrated model (as defined above). 

GPI Polarity  (Register $2001, bit 1) 
The GPI Polarity bit is ‘0’ if the GPIs use positive polarity as defined in section 3.5.5, or if 
there are no GPIs. The GPI Polarity bit is ‘1’ if the GPIs use negative polarity. 

Number of GPIs  (Register $2002) 
This field is an integer from 0 to 240 reporting the number of GPIs (for the non-integrated 
model) or the number of GPIOs (for the integrated model). 

Number of GPOs  (Register $2003) 
This field is an integer from 0 to 240 reporting the number of GPOs (for the non-integrated 
model). For the integrated model, the Number of GPOs query is unused and reserved. 
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3.5.4. Control registers 

Register $2041 controls the overall operation of the GPIOs. 
  7  6  5  4  3  2  1  0  

$2041 — — — Debounce — — — —          

Figure 42.  Function $20 General GPIO Control register 

This register resets to $00, and can be left at $00 in most applications. In the present version of Function 
$20, this register contains only a Debounce bit: 

Debounce  (Register $2041, bit 4) 
If this bit is set to ‘1’, the device applies a debouncing algorithm to all the GPI inputs. 
The exact debouncing algorithm is device-specific, but in general debouncing strives to 
eliminate brief glitches in the input signal due, for example, to “bounce” in the contacts of 
a mechanical switch. Enabling debouncing will modestly impact the responsiveness of the 
GPIs; depending on the debouncing algorithm, this impact may affect the speed at which 
high-to-low transitions are registered, the speed at which low-to-high transitions are 
registered, and/or the ability to catch fast low or high pulses. 

Registers $2042 onward each control the output modes of a group of eight consecutive GPOs. The 
number of control registers depends on the number of GPOs. Each group of eight GPOs is controlled by a 
pair of consecutive control registers. In general, if there are N GPOs, then there are 2 * int((N+7) / 8) 
GPO control registers. If a device has no GPOs (but Function $20 is still present because there are GPIs), 
then there are no GPO control registers at all. 

Figure 43 shows an example for the case of 19 GPOs. 
  7  6  5  4  3  2  1  0  

$2042 Di 7 r Di 6 r Di 5 r Di 4 r Di 3 r Di 2 r Di 1 r Di 0 r                  
$2043 Da a7 t Da 6 ta Da a5 t Da a4 t Da 3 ta Da a2 t Da 1 ta Da a0 t                  
$2044 Dir 5 1 Dir 4 1 Di 3 r1 Dir 2 1 Di 1 r1 Dir 0 1 Di 9 r Di 8 r                  
$2045 Dat 15 a Dat 14 a Dat 13 a Dat 12 a Dat 11 a Dat 10 a Da 9 ta Da a8 t                  
$2046 — — — — — Dir 8 1 Dir 7 1 Dir 6 1                  
$2047 — — — — — Dat 18 a Dat 17 a Dat 16 a         

Figure 43.  Function $20 GPO Output Control registers (for example of 19 GPOs) 

The DataN and DirectionN bits together control the state of GPO #N, as follows: 

DirectionN DataN State of GPIO #N 
0 0 Input mode, high-impedance 
0 1 Input mode, with weak pull-up resistor 
1 0 Output mode, driving digital ‘0’ 
1 1 Output mode, driving digital ‘1’ 

Table 11.  GPO control settings (integrated-model conventions) 

58 Copyright © 2007—2008 Synaptics Incorporated. All Rights Reserved. 



Synaptics RMI3 Interfacing Guide  PN: 511-000099-01 Rev. F 

DirectionN DataN State of GPO #N 
0 0 High-impedance state 
0 1 Weak pull-up resistor 
1 0 Driving digital ‘0’ 
1 1 Driving digital ‘1’ 

Table 12.  GPO control settings (non-integrated-model conventions) 

The GPO Data and Direction control registers may be written individually or in pairs or groups. However, 
if a single RMI write transaction covers both the Data and Direction registers for a given GPO #N, then 
the two parts of the control state of GPO #N will be updated coherently: Register writes may change the 
DataN and DirectionN bits from any one to any other of the four states in Table 11 without creating a 
glitch on the pin. 

Depending on the device implementation, writing to a GPO control register may have an immediate effect 
on the controlled GPOs, or the effect may be delayed until the next internal reporting period, typically a 
few milliseconds. 

The reset states of the GPO control registers are up to the device; in many products, they will reset to non-
$00 values. 

Chip pins that are GPIs but not GPOs are not controllable through the RMI interface. They typically are 
either permanently in high-impedance mode, or permanently in weak pull-up mode, depending on the 
design of the particular device. 

3.5.5. Data registers 

When GPIs are present, Function $20 has one data source. The number of data registers in the data source 
varies depending on the number of GPIs. If there are 1–8 GPIs, Function $20 has one data register. If 
there are 9–16 GPIs, Function $20 has two data registers. In general, if there are N GPIs, Function $20 
has int ((N+7) / 8) data registers. If there are GPOs but no GPIs, then Function $20 is present with no data 
sources or data registers. 

GPIs 7–0 are reported in bits 7:0 of the first GPI data register. GPIs 15–8 are reported in bits 7:0 of the 
second data register, GPIs 23–16 are reported in the third data register, and so on. In general, GPI number 
N is reported in bit (N mod 8) of data register number int (N / 8). 

A device may define its GPIs to have either positive or negative polarity. Positive polarity means each 
GPI data bit follows the digital level on the associated pin, either ‘1’ for a high voltage or ‘0’ for a low 
voltage. Positive polarity is most appropriate for general-purpose I/Os. Negative polarity means each GPI 
data bit follows the complement of the digital level on the associated pin. Negative polarity is most 
appropriate for input pins connected to mechanical buttons with pull-up resistors. 

The GPI data registers are shown in Figure 44, with the example of 19 GPIs. 
  7  6  5  4  3  2  1  0  

R+0 GPI7 GPI6 GPI5 GPI4 GPI3 GPI2 GPI1 GPI0                   
R+1 GP 15 I GP 14 I GP 13 I GP 12 I GP 11 I GP 10 I GPI9 GPI8                   
R+2 — — — — — GP 18 I GP 17 I GP 16 I         

Figure 44.  Function $20 data registers for GPIs (for example of 19 GPIs) 
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If a device includes both mechanical and capacitive buttons, these are treated in RMI as two separate 
functions with two separate data sources and data registers. Chip pins that are GPOs but not GPIs do not 
have their states reported through the RMI interface, even if they are set in high-impedance mode. 

3.5.6. Interrupt Requests 

If GPIs are present, Function $20 asserts an interrupt request on its data source whenever any GPI data bit 
changes from a ‘0’ to a ‘1’ or from a ‘1’ to a ‘0’. Because an interrupt request is a “sticky” bit, interrupt 
requests read as ‘1’ if any GPI has changed since the last time the data registers were read, even if the GPI 
has changed back to its previous value since that time. The device may choose to sample the GPI pins and 
assert an interrupt request for GPIs either asynchronously, or synchronously with the report rate of the 
capacitive sensors in the device. In practice, current Synaptics products always sample and report GPIs 
synchronously. 

3.6. Function $22: Simplified LEDs 
Function $22 implements LEDs with adjustable brightness, as might be implemented using either pulse 
width modulation (PWM) or adjustable-current output pins. For brevity, RMI sometimes refers to 
Function $22 devices as “LEDs.” However, nothing about Function $22 requires that the component 
being controlled is a light-emitting diode; also, simple LEDs that do not require brightness control might 
be implemented more easily using Function $20 GPOs. 

Depending on the device, chip pins that control Function $22 LEDs may or may not also be accessible as 
Function $20 GPIOs. A general-purpose device such as Synaptics OneTouch™ might allow the same pin 
to be controlled via either function; a custom product would typically implement each pin as either an 
LED, a GPI, or a GPO depending on the pin’s intended purpose. 

3.6.1. Number of LEDs 

A Function $22 device may include up to 16 brightness-controlled LEDs. The LEDs are identified by 
consecutive numbers starting with LED #0. The total number of LEDs is reported in query register $2201 
(described below). 

3.6.2. Register page layout 

Function $22 implements the Standard Function Page Layout, as shown below. 

Address range Purpose 
   $2200 Function Version query 
   $2201–$2202 General LED queries 
   $2203–$223F Reserved for future definition 
   $2240 Reserved for future command register 
   $2241 Reserved for future control register 
   $2242–$2243 LED Enable Command register 
   $2244–$2245 General LED Control registers 
   $2246–$224F Reserved for future control registers 
   $2250–$225F Per-LED control registers 
   $2260–$22FF Reserved for future definition 

Table 13.  Function $22 register page 
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3.6.3. Query registers 

Register $2200 reports the version number of the Function $22 specification that the device implements. 
  7  6  5  4  3  2  1  0  

$2200 Function major version Function minor vers on i         

Figure 45.  Function $22 Version query register 

Registers $2201–$2202 report the number of LEDs on the device: 
  7  6  5  4  3  2  1  0  

$2201 Number of LEDs                   
$2202 — — — — — — — —          

Figure 46.  Function $22 General LEDs query registers 

No bits in register $2202 have defined meanings. 

3.6.4. Control registers 

Registers $2242 and $2243 control whether or not each LED is enabled. Bit N of register $2242 controls 
the state of LED #N, and bit N of register $2243 controls the state of LED #(N + 8). 

  7  6  5  4  3  2  1  0  
$2242 LED #7 LED #6 LED #5 LED #4 LED #3 LED #2 LED #1 LED #0                   
$2243 LED #15 LED #14 LED #13 LED #12 LED #11 LED #10 LED #9 LED #8          

Figure 47.  Function $22 Enable Control registers 

Registers $2242 and $2243 reset to $00. The host should write registers $2242 and $2243 to set the 
device in the desired state of each LED. 

LED Enable (Registers $2242 and $2243) 
Writing the LED Enable N bit to ‘1’ sets LED #N to the Enabled state. The LED will turn 
on over a specified period of time, or animate in a specified pattern. The amount of LED 
current corresponding to the “on” state for an LED is set by the Per-LED Control registers. 

 Writing the LED Enable N bit to ‘0’ sets LED #N to the Disabled state. The LED will turn 
off either immediately or over a specified period of time. In RMI Function $22, the “off” 
state is always represented by zero sink current on the LED pin. 

 

Registers $2244–$2245 control the speed of the ramps and animations of the LEDs. 
  7  6  5  4  3  2  1  0  

$2244 Ramp Period A                   
$2245 Ramp Period B          

Figure 48.  Function $22 LED Period Control registers 
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These registers reset to $00. The fields of these registers are defined as follows: 

Ramp Period A  (Register $2244) 
This field determines the ramp rate for selected LEDs. Ramp Period A is used by any LED 
whose Pattern is ‘000’, ‘010’, ‘100’, ‘110’, or ‘111’. The period is specified in multiples of 
approximately 10 ms, from 0 ms to 2550 ms: 

• $00 indicates an instantaneous transition to the new target intensity.  
• $01 - $FE specifies multiples of approximately 10 ms. The basic ramp period unit of 

10 ms is accurate to ±10%. 
• $FF causes the transition to take approximately 2.5 seconds. 

 Writing to register $2244 while any LED is currently ramping based on Ramp Period A 
will have an undefined (but not drastic) effect on the LED. 

Ramp Period B  (Register $2245) 
This field determines the ramp rate for selected LEDs. It is defined analogously to Ramp 
Period A. Ramp Period B is used by any LED whose Pattern is ‘001’, ‘011’, ‘101’, ‘110’, 
or ‘111’. 

Each LED also has one register that controls the LED specifically. The register for LED #N is at address 
$2250 + N: 

  7  6  5  4  3  2  1  0  
$2250 Pat rn te Brigh ness t         

Figure 49.  Function $22 per-LED Control register (address for LED #0 shown) 

These registers control the intensity of the selected LED: 

Brightness (Register $2250, bits 4:0) 
The Brightness field indicates the target intensity level when the LED is enabled: 

• $00 represents fully off,  

• $01 - $1E represent intermediate intensities evenly or approximately-evenly spaced 
between fully off and fully on, and  

• $1F represents fully on. 

Pattern (Register $2250, bits 7:5) 
The Pattern field takes one of the following values: 

Pattern = ‘000’:  Rise and fall period A. 
In this setting, when the LED is enabled by setting the LED Enable N bit in 
register $2242 or $2243, the LED ramps to the intensity indicated by the 
Brightness field over a time determined by Ramp Period A (register $2244) and 
then holds at that intensity. When the LED is disabled by clearing the LED 
Enable N bit, the LED ramps down to the “off” state over a time determined by 
Ramp Period A and then remains “off.” 
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 The ramp begins immediately after the write to the LED Enable control 
registers or the Per-LED Control register, and may be unsynchronized (out of 
phase) with other ongoing ramps or animations. To ramp several LEDs 
synchronously, write all the LED Enable bits at once in the same RMI write 
transaction. 

Pattern = ‘001’:  Rise and fall period B. 
This pattern is like pattern ‘000’, except that the Ramp Period B parameter 
(register $2245) determines the ramp rate instead of Ramp Period A. 

Pattern = ‘010’:  Rise period A, fast fall. 
In this setting, when the LED is enabled the LED ramps to the intensity 
indicated by the Brightness field over a time determined by Ramp Period A and 
then holds at that intensity. When the LED is disabled, the LED switches 
immediately to the “off” state. 

Pattern = ‘011’:  Rise period B, fast fall. 
This pattern is like pattern ‘010’, except that the Ramp Period B parameter 
(register $2245) determines the ramp rate instead of Ramp Period A. 

Pattern = ‘100’:  Fast rise, fall period A. 
In this setting, when the LED is enabled the LED switches immediately to the 
intensity indicated by the Brightness field and then holds at that intensity. 
When the LED is disabled, the LED ramps down to the “off” state over a time 
determined by Ramp Period A and then remains “off.” 

Pattern = ‘101’:  Fast rise, fall period B. 
This pattern is like pattern ‘100’, except that the Ramp Period B parameter 
(register $2245) determines the ramp rate instead of Ramp Period A. 

Pattern = ‘110’:  Ramping animation. 
In this setting, when the LED is enabled the LED ramps to the intensity 
indicated by the Brightness field over a time determined by Ramp Period A, 
and then holds at that intensity for a time determined by Ramp Period B. The 
LED then ramps down to the “off” state over Ramp Period A and remains off 
for Ramp Period B. This cycle repeats continuously for as long as the LED is 
enabled. 

 When the LED is disabled, the LED switches immediately to the “off” state. 

Pattern = ‘111’:  Pulsed animation. 
In this setting, when the LED is enabled the LED pulses between the “on” and 
“off” states. The LED switches immediately to the intensity indicated by the 
Brightness field, then remains at the target intensity for a time determined by 
Ramp Period B. Then the LED switches immediately to the “off” state and 
remains “off” for a time determined by Ramp Period A. This cycle repeats 
continuously for as long as the LED is enabled. 

 When the LED is disabled, the LED switches immediately to “off” state. 
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Function $22 interacts with the power management features described in section 2.6.1. The device will be 
unable to doze if any ramping or animation is ongoing. Also, for devices that use pulse width modulation 
(PWM) to control LED brightness, the device will not doze if any LED is resting at an intensity other 
than “off” or fully on (Brightness = $1F). Devices that use adjustable current to control LED brightness 
will be able to doze when LEDs rest at intermediate intensities, but the dozing power usage of the device 
may be considerably higher when any LED is at any intensity other than “off.” 

3.6.5. Data registers 

RMI Function $22 has no data sources or data registers. 

3.6.6. Interrupt Requests 

Because RMI Function $22 has no data sources, it has no interrupt request state and does not affect the 
Attention signal. 
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4. Standard RMI physical layers 
RMI is defined so that it may be implemented atop a variety of physical interfaces. 

RMI is defined for three physical layers: 

• RMI-on-I2C. See section 4.1.  

• RMI-on-SMBus: See section 4.2. 

• RMI on four-wire SPI: See section 4.3.  

4.1. I2C physical interface 
Synaptics RMI-on-I2C devices are suitable for connecting directly to an industry-standard I2C host 
interface. This section describes the I2C physical layer. The RMI-on-I2C interface has been developed 
using version 2.1 of The I2C Bus Specification, dated January 2000. This document can be found at 
http://www.nxp.com/. The remainder of this section assumes that the reader has familiarity with The I2C 
Bus Specification document. 

4.1.1. I2C transfer protocols 
To communicate with an RMI-on-I2C device, a host needs to be able to: 

1. Read one or more RMI registers starting from some RMI register address. 

2. Write one or more RMI registers starting from some RMI register address. 

The I2C bus specification imposes no limit to the number of registers that the host can read in a single 
transfer. However, RMI does not permit a physical layer transfer to cross a page boundary, so the 
practical limit on the maximum length of a transfer would be the number of registers in an RMI address 
page, or 256. 

The I2C bus specification imposes no limit on how long a transfer can take, or how slowly a bus master is 
allowed to clock the bus. To meet this specification, RMI devices will not impose any timeouts during 
any I2C transfer. 

4.1.1.1. I2C transfer details 

The following terms are used in the definition of the I2C transfer protocols: 

S Indicates an I2C Start event 

P Indicates an I2C Stop event 

Sr Indicates an I2C Repeated Start event 

A Indicates an I2C ACK bit 

N Indicates an I2C NAK bit 
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SlaveAddr The 7-bit Slave Address field in an I2C header byte 

Wr The 1-bit ‘write’ field in an I2C header byte  
(a Write always has the value 0) 

Rd The 1-bit ‘read’ field in an I2C header byte  
(a Read always has the value 1) 

4.1.2. RMI-on-I2C register addressing 
RMI defines a 15-bit RMI register address space. When RMI is implemented using the I2C physical layer, 
the size of the I2C Command Code effectively limits the size of a register address to 8 bits. As a result, 
RMI-on-I2C devices define a Page Select register to supply the upper 7 bits of the 15-bit RMI address, 
while the Command Code in each I2C transfer supplies the lower 8 bits of the 15-bit address.  

To make most efficient use of the I2C paged addressing scheme, Synaptics RMI-on-I2C devices define 
that for all commonly used RMI device registers, there will be a duplicate aliased register located at a 
new RMI address. The entire set of aliased register addresses are grouped into a single page of the RMI 
address space. This enables user software to access all commonly used RMI registers without ever having 
to rewrite the Page Select register.  

The aliased addresses occupy page $04xx in the general RMI address map. At reset, all RMI-on-I2C 
devices initialize their Page Select register to the value $04. This means that by default, all I2C register 
accesses will access the RMI aliased address space. 

For example: After a device reset, the Page Select register is defined to default to page address $04. If the 
host sends an RMI-on-I2C device a Read Byte command to write address $F0, the device will access page 
$04 at offset $F0, or address $04F0. From the table below, it can be seen that the aliased address $04F0 
corresponds to the unaliased address $0000, or the RMI Device Control register. 

The aliased address space takes the following general form:  

Aliased Address General RMI 
Address 

Register Groups 

$0400 - $041F $0400 - $041F RMI Data Registers and Device Status register (actual 
addresses are product dependent). See section 2.5.3 for a 
description of the Device Status register. 

$0420 - $043F $xx40 - $xx5F Command/Control/Status registers for the first RMI 
function. 

$0440 - $045F $xx40 - $xx5F Command/Control/Status registers for a second RMI 
function. 

$0460 - $047F $xx40 - $xx5F Command/Control/Status registers for a third RMI function. 
$0480 - $049F $xx40 - $xx5F Command/Control/Status registers for a fourth RMI 

function. 
$04E0 - $04E7 $0200 - $0207 RMI Product ID queries 
$04F0 - $04F4 $0000 - $0004 RMI Control, Command, and General Status registers 
$04FF $xxFF Page Select register (default value is $04) 

Table 14.  General RMI Aliased Address Map 
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Note:  The exact Aliased Address Space address assignments are product-dependent. All products are 
shipped with documentation that describes their specific address map. See section 4.4 for a sample 
Product Address Map. 

4.1.3. Block read operations 
The Block Read operation allows a host to read one or more RMI registers starting from a specified RMI 
address. The device starts reading from the RMI address specified by the read operation, and continues to 
send registers from consecutively incrementing RMI addresses until the host finally NAKs the transfer.  

Below is an example of a Block Read operation, where the host reads 1 RMI register from address N: 

S SlaveAddr Wr A Low 8 bits of 
register addr N 

A Sr Slave Addr Rd A Register N N P 

 

Below is an example of a Block Read operation where the host reads 4 consecutive RMI registers starting 
from address N: 

S SlaveAddr Wr A Low 8 bits of 
register addr N 

A Sr Slave Addr Rd A Register N A Register 
N+1 

A 

 

Register 
N+2 

A Register 
N+3 

N P 

 

It is not permitted to perform an I2C read operation that is not preceded by an I2C write of the low-order 8 
bits of the RMI register address. 

4.1.3.1. Repeated starts 

The Repeated Start separating the write of the RMI register address from the read of the register data 
ensures correct operation on an I2C bus that supports multiple bus masters. For a host bus that either does 
not require multi-master support or cannot generate Repeated Start events, RMI-on-I2C devices permit a 
host to replace a Repeated Start with a Stop event followed by a Start event. 

4.1.4. Block write operations 
The Block Write operation allows a host to write one or more RMI registers starting at a specified RMI 
address. The device starts writing data to the RMI address specified by the write operation, and continues 
to write registers to consecutively incrementing RMI addresses as long as the host keeps sending data. An 
RMI device will ACK every byte that it receives. 
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Below is an example of a Block Write operation where the host writes data to a single RMI register at 
address N: 

S SlaveAddr Wr A Low 8 bits of 
register addr N 

A Register N A P 

 

Below is an example of a Block Write operation where the host writes 3 consecutive RMI registers 
starting with the register at address N: 

S SlaveAddr Wr A Low 8 bits of 
register addr N 

A Register N A Register N+1 A Register N+2 A P 

 

4.1.5. Synaptics module I2C protocol compliance 
The Synaptics I2C interface is designed to comply with the basic I2C protocol as described in the I2C Bus 
Specification, Version 2.1 by Philips. Conforming to this specification ensures the following:  

• Synaptics modules correctly recognize and respond to Start events, Repeated Start events, and 
Stop events.  

• Synaptics devices properly generate SCL “clock stretching” as a slave device.  

• Synaptics modules support the 7-bit addressing mode.  

4.1.5.1. Addressing modes  

Synaptics devices do not support the 10-bit addressing extension to I2C. Synaptics Master-Slave modules 
master their transmissions to a host device using 7-bit addresses.  

Synaptics modules can co-exist on the same I2C bus with other devices that support the 10-bit extended 
addressing mode. In addition, while Synaptics Slave-Only modules have 7-bit addresses, they can 
respond as slave device to a host/master that has a 10-bit address. 

4.1.5.2. Data rate and clock stretching 

Synaptics I2C devices can maintain either the “Fast Mode” data rate in the I2C Bus Specification at 400K 
bits per second, or the “Normal Mode” data rate of 100K bits per second while a byte is being clocked 
over the bus. In either case, an RMI device may be required to perform an I2C Clock-Stretch operation in 
between the bytes of a transfer. 

4.1.6. I2C electrical compliance  
Synaptics I2C modules meet the electrical specifications of both standard mode (100K bits per second) 
and fast mode (400K bits per second) except as described in the following sections. For more information 
on those aspects, see the I2C Bus Specification.  
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4.1.6.1. I2C bus VDD 

In typical host systems, the I2C bus VDD will be the same as the Synaptics ASIC VDD. However, the I2C 
Bus Specification allows the I2C bus VDD to be different than the VDD level of the ASICs that are 
connected to the bus. The Synaptics ASIC implementation clamps the I2C bus signals SDA and SCL to 
the Synaptics ASIC VDD through some ESD (electrostatic discharge) protection diodes.  

This leads to a few system implications if the I2C bus VDD does not match the Synaptics ASIC VDD:  

• The I2C bus VDD must be no greater than the Synaptics ASIC VDD.  

• The host system must supply the pullup resistors from SDA and SCL to the I2C bus VDD.  

4.1.6.2. Powering down a Synaptics I2C device 

If VDD is removed from a Synaptics I2C device to power it down, the ESD diodes built into the SDA and 
SCL pins of the Synaptics device will clamp those I2C bus signals to ground. This means that all I2C 
communication on that bus segment will cease until power is restored to the Synaptics module. This will 
only be an issue if a host desired to power down a Synaptics RMI device without powering down the 
other I2C devices on the same bus. 

4.1.6.3. Fast mode hysteresis 

The I2C Bus Specification requires a hysteresis of 10% of bus VDD if bus VDD is less than 2.0V. In the 
Synaptics implementation, the fast-mode Schmitt-trigger hysteresis is 5% of ASIC VDD. 

4.1.6.4. Noise rejection filters 

The Synaptics SDA and SCL inputs do not implement the fast-mode spike-suppression filters precisely as 
described in the I2C Bus Specification. Instead, the Synaptics implementation of the I2C SDA and SCL 
inputs use different mechanisms to provide comparable noise rejection capabilities. 

 

4.2. SMBus physical interface 
This section describes the SMBus physical layer. (The version of the physical layer of an RMI device can 
be found by reading register $0202, described in section 2.7.3.). The RMI-on-SMBus interface has been 
developed using version 2.0 of the System Management Bus (SMBus) Specification, dated August 3, 
2000. This document can be found at http://www.smbus.org/. 

Synaptics RMI-on-SMBus devices are suitable for connecting directly to an industry-standard SMBus 
host interface. The SMBus transaction protocols supported by the Synaptics RMI-on-SMBus interface are 
defined in section 4.2.3. 

4.2.1. RMI-on-SMBus register addressing 
RMI defines a 15-bit RMI register address space. When RMI is implemented using the SMBus physical 
layer, the size of the SMBus Command Code effectively limits the size of a register address to 8 bits. As a 
result, RMI-on-SMBus devices define a Page Select register to supply the upper 7 bits of the 15-bit RMI 
address, while the Command Code in each SMBus transfer supplies the lower 8 bits of the 15-bit address.  
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To make most efficient use of the SMBus paged addressing scheme, Synaptics RMI-on-SMBus devices 
define that for all commonly used RMI device registers, there will be a duplicate aliased register located 
at a new RMI address. The entire set of aliased register addresses are grouped into a single page of the 
RMI address space. This will enable user software to access all commonly used RMI registers without 
ever having to rewrite the Page Select register.  

The aliased addresses occupy page $04xx in the general RMI address map. At reset, all RMI-on-SMBus 
devices initialize their Page Select register to the value $04. This means that by default, all SMBus 
register accesses will access the RMI aliased address space. 

For example: After a device reset, the Page Select register is defined to default to page address $04. If the 
host sends an RMI-on-SMBus device a Read Byte command to write address $F0, the device will access 
page $04 at offset $F0, or address $04F0. From the table below, it can be seen that the aliased address 
$04F0 corresponds to the unaliased address $0000, or the RMI Device Control register. The aliased 
address space takes the following general form:  
 

Aliased Address General RMI 
Address 

Register Groups 

$0400 - $041F $0400 - $041F RMI Data Registers and Device Status register (actual 
addresses are product dependent). See section 2.5.3 for a 
description of the Device Status register. 

$0420 - $043F $xx40 - $xx5F Command/Control/Status registers for the first RMI 
function. 

$0440 - $045F $xx40 - $xx5F Command/Control/Status registers for a second RMI 
function. 

$0460 - $047F $xx40 - $xx5F Command/Control/Status registers for a third RMI function. 
$0480 - $049F $xx40 - $xx5F Command/Control/Status registers for a fourth RMI 

function. 
$04E0 - $04E7 $0200 - $0207 RMI Product ID queries 
$04F0 - $04F4 $0000 - $0004 RMI Control, Command, and General Status registers 
$04FF $xxFF Page Select register (default value is $04) 

Table 15.  General RMI Aliased Address Map 

Note:  The exact aliased address space address assignments are product-dependent. All products are 
shipped with documentation that describes their specific address map. See section 4.4 for a sample 
Product Address Map. 

4.2.2. Page Select register  
The Page Select register is defined to exist at address $xxFF in every page of the general 15-bit RMI 
address space. This means that the Page Select register can be accessed as the last register on every page 
in the entire RMI address space. 

The Page Select register is a control register that supplies the upper 7 bits of the 15-bit RMI address. The 
default value of the Page Select register is $04. This means that by default, SMBus transfers will access 
the aliased address space. Since all of the important RMI registers have been defined to exist on page 
$04xx, typical SMBus hosts can treat RMI-on-SMBus devices as though they only have 8-bit addresses.  
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4.2.3. SMBus transfer protocols 
To communicate with an RMI-on-SMBus device, a host needs to be able to do the following things: 

1. Read one or more RMI registers starting from some RMI register address. 

2. Write one or more RMI registers starting from some RMI register address. 

RMI-on-SMBus supports the standard SMBus transfer protocols to read and write bytes, and to read and 
write words. Since all RMI registers are 8-bit registers, reading or writing a word really means to read or 
write a pair of sequential RMI byte-wide registers. The following subsections describe the SMBus read 
and write commands, using the notation found in the System Management Bus (SMBus) Specification, 
Version 2.0 of August 3, 2000.  

4.2.3.1. SMBus Byte Write 

The SMBus Byte Write command writes a byte to a single register in an RMI-on-SMBus device. In its 
general form, the SMBus Byte Write command has this format: 
 

S SlaveAddr Wr A Command Code A Data Byte A P 

• The Command Code is the address of the RMI register to be written. 

• The Data Byte is the value to write to the RMI register. 

4.2.3.2. SMBus Byte Read 

The SMBus Byte Read command reads the contents of single register in an RMI-on-SMBus device. In its 
general form, the SMBus Byte Read command has this format: 
 

S SlaveAddr Wr A Command Code A Sr Slave Addr Rd A Data Byte N P 

• The Command Code is the address of the RMI register to be read. 

• The Data Byte is the value that was read from the RMI register. 

• All SMBus Read operations terminate with a NAK bit followed by a STOP bit. 

 

4.2.3.3. SMBus Word Write 

The SMBus Word Write command writes a pair of bytes to a sequential pair of registers in an RMI-on-
SMBus device. In its general form, the SMBus Word Write command has this format: 
 

S SlaveAddr Wr A Command Code A Data Byte 0 A Data Byte 1 A P 

• The Command Code is the address of the first RMI register to be written. 

• Data Byte 0 will be written to the RMI Command Code address. 

• Data Byte 1 will be written to the RMI Command Code address+1. 
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4.2.3.4. SMBus Word Read 

The SMBus Word Read command reads the contents of a sequential pair of registers in an RMI-on-
SMBus device. In its general form, the SMBus Word Read command has this format: 

S SlaveAddr Wr A Command Code A Sr Slave Addr Rd A Data Byte 0 A Data Byte 1 N P 

• The Command Code is the address of the first RMI register to be read. 

• Data Byte 0 is the contents of the register at the RMI Command Code address. 

• Data Byte 1 is the contents of the register at the RMI Command Code address+1. 

• All SMBus Read operations terminate with a NAK bit followed by a STOP bit. 

4.2.4. Repeated starts 
For the Read Byte and Read Word transfer protocols, the SMBus specification requires that a Repeated 
Start event must be used to separate the writing of the Command Code byte from the reading of the data 
byte(s). The Repeated Start ensures correct operation in host systems that support multiple bus masters. 
For host systems that either do not require multi-master support or cannot generate Repeated Start events, 
Synaptics RMI-on-SMBus devices will permit a host to replace a Repeated Start with a Stop event 
followed by a Start event. 

4.2.5. Multi-register read/write operations 
To improve bus utilization, Synaptics RMI-on-SMBus devices permit special multi-register read and 
write operations as an extension to the SMBus specification. If a host performs a standard Byte Read 
operation but simply keeps reading more bytes, the device will continue to send registers from 
consecutively incrementing RMI addresses until the host finally NAKs the transfer. 

Below is an example of a multi-register Read operation, where the host reads 4 consecutive RMI registers 
starting from address N: 

S SlaveAddr Wr A Command Code 
(Register Addr N) 

A Sr Slave Addr Rd A Register N A Register 
N+1 

A 

 

Register 
N+2 

A Register 
N+3 

N P 

In similar fashion, if the host performs a standard Byte Write operation but simply keeps writing more 
bytes, the RMI-on-SMBus device will write the extra bytes to subsequent register addresses. 

Below is an example of a multi-register Write operation, where the host writes 3 consecutive RMI 
registers starting with register address N: 

S SlaveAddr Wr A Command Code 
(Register Addr N) 

A Register N A Register N+1 A Register N+2 A S 
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4.2.6. SMBus compliance 
The SMBus Specification Version 2.0 describes a wide variety of features. Not all of these features are 
required to be supported for a particular device to be considered to be SMBus-compliant. Full information 
on the SMBus can be found in the document titled System Management Bus (SMBus) Specification, 
Version 2.0 of August 3, 2000. This document can be found at http://www.smbus.org/.  

SMBus is described in terms of layers. Synaptics SMBus compliance issues will be dealt with on a layer-
by-layer basis.  

4.2.6.1. Layer 1: physical layer 

In general, the SMBus physical layer looks like a standard I2C physical layer interface. To solve certain 
problems inherent in a typical I2C interface, SMBus imposes some additional restrictions on the I2C 
interface that it uses as its physical layer. These restrictions typically have to do with the timing and 
length of the transfers that are permitted. The important restrictions imposed by the SMBus specification 
on a Synaptics RMI slave device are: 

• 10 KHz minimum bus operating frequency, 

• 25 mSec (min), 35 mSec (max) clock-low timeout period, and 

• 500 mSec (max) Time in which a device must be operational after power-on reset. 

Note: Synaptics RMI-on-SMBus devices do not support the SMBus SMBALERT# signal. This means 
that Synaptics SMBus devices will not respond to the SMBus Alert Response Address. Synaptics devices 
support a general purpose Attention signal (ATTN) that can either be used as an interrupt input to a host 
processor or as an input that the host can poll. As an order-time option, the ATTN signal can be 
configured as being either active high or active low. 

4.2.6.2. Layer 2: data link layer 

Synaptics RMI-on-SMBus devices implement the Data Link layer as described in the SMBus 
Specification. Section 4.3.3 of the SMBus Specification Version 2.0 defines that SMBus devices must 
implement “clock-low extending” (also known as I2C “clock-stretching”). In particular, the SMBus 
Specification V2.0 defines that all devices on a SMBus (both masters and slaves) must be able to tolerate 
both periodic and random clock stretching. 

Synaptics RMI-on-SMBus slave devices can tolerate both random and periodic clock-stretching imposed 
by any other device sharing the SMBus. Synaptics SMBus slave devices will stretch the clock for short 
periods of time in random fashion, but they will never stretch the clock long enough to violate the 10 KHz 
(min) bus transfer frequency. 

4.2.6.3. Layer 3: SMBus network layer 

The SMBus Specification defines eleven different command protocols that can be used to transfer data. 
The specification states that a slave device does not need to support all eleven protocols in order to be 
SMBus compliant.  

Synaptics RMI-on-SMBus devices support the following four SMBus transfer protocols: 

• Byte Read, Byte Write 

• Word Read, Word Write 
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Synaptics SMBus devices do not support the following SMBus protocols: 

• Quick Command 

• Send Byte, Receive Byte 

• Process Call 

• Block Write Process Call, Block Read Process Call 

• Block Read, Block Write 

Note: Synaptics SMBus devices do not support the ARP functionality to assign bus addresses. Synaptics 
SMBus devices implement a fixed, 7-bit I2C addressing mechanism. The 7-bit I2C slave address for a given 
Synaptics SMBus device will be fixed at the time that the product is ordered. It is the implementer’s 
responsibility to choose a SMBus address that will not conflict with other SMBus devices in their system. If 
desired, RMI-on-SMBus modules can be ordered with an address-strapping option. This allows a host 
system to select a module’s I2C address among two or more preconfigured I2C addresses by strapping 
module IO pins.  

Note: Synaptics devices do not support the SMBus Packet Error Check (PEC) byte. Hosts should not 
expect Synaptics devices to generate a PEC byte during read operations. Hosts should not send PEC bytes 
to a Synaptics device during write operations. 

4.2.7. Sample SMBus transfers 
All of these examples assume that the RMI-on-SMBus device has been assigned I2C address $20. 

Write a RESET Command:  

• Uses SMBus   
Write Byte protocol. 

S $40 A $F4 A $01 A P 

• RMI Device Command register is at SMBus address $F4. 

• The Reset command bit is bit 0 in the Device Command register. 

Read Button Data:  

• Uses SMBus 
Read Word transfer protocol. 

S $40 A $00 A Sr $41 A $81 A $02 N P 

• RMI Button Data registers are located sequentially at SMBus addresses $00 and $01. 

• Example data assumes that buttons 0, 7, and 9 are being pressed, and all others are released: 

Write Sleep Mode Control Register:  

• Uses SMBus   
Write Byte protocol. 

S $40 A $F0 A $81 A P 

• RMI Device Control register is located at SMBus address $F0.  

We will write the value $81 (binary 10---001), where the Report Rate bits ‘10’ indicate normal 
80Hz operation and the Sleep Mode bits ‘001’ will configure normal operation. This means that 
the device will doze to save power, but it will wake up to process any button presses. 
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4.3. SPI physical interface 
This section describes the RMI-on-SPI physical layer. (The version of the physical layer of an RMI 
device can be found by reading register $0202, described in section 2.7.3.) 

4.3.1. SPI signals 

RMI-on-SPI uses the industry-standard four-wire SPI interface. The SPI signals include: 

• SSB, a device-select signal driven by the host. In some SPI systems this signal is known as Slave 
Select, S̄S̄, or Chip Select, C̄S̄. SSB is an active-low signal that goes low when an RMI 
transaction is in progress. 

• SCK, a clock signal driven by the host. Several clocking conventions are supported, as described 
in section 4.3.2. 

• MOSI (master out / slave in), a data signal driven by the host. 

• MISO (master in / slave out), a data signal driven by the RMI device. The device drives MISO 
only when SSB is low; when SSB is high, the device floats its MISO pin. This allows multiple 
RMI devices to be connected with SCK, MOSI, and MISO all tied in parallel, using separate SSB 
wires to address the various devices. 

• ATTN, an optional attention signal driven by the RMI device. This pin is not present on devices 
that use the SRQ mechanism to signal attention (see section 4.3.4 below). 

• RESET, an optional reset signal driven by the host. If a device provides a RESET pin, the pin is 
an active-low input with a pull-up resistor on the RMI device. This allows RESET to be left 
unconnected when not needed. 

4.3.2. SPI clocking 

“SPI” is actually a loosely defined family of standard interfaces. The clock polarity and clock phase 
(often denoted CPOL and CPHA) vary from one SPI system to another. Synaptics can supply RMI 
devices that use the standard clocking conventions that correspond to CPHA = ‘1’. The clocking 
conventions that correspond to CPHA = ‘0’ are not currently supported by the RMI standard. 

CPOL defines the idle level of SCK. CPOL is ‘0’ if SCK is low between transactions, or ‘1’ if SCK is 
high between transactions. The usual clocking convention for RMI-on-SPI devices is CPOL = ‘1’; upon 
request, Synaptics can also supply RMI devices that use the CPOL = ‘0’ clocking convention. 

CPHA defines on which SCK edge the MOSI and MISO data are sampled by their respective receivers. 
CPHA is ‘0’ to sample on the edge where SCK leaves its idle level (the falling edge if CPOL is ‘1’), or 
CHPA is ‘1’ to sample on the edge where SCK returns to its idle level (the rising edge if CPOL is ‘1’). 
Thus, all current RMI-on-SPI devices sample MOSI, and expect the host to sample MISO, on the trailing 
SCK edge where SCK returns to its idle level. 

RMI always transmits each byte most-significant-bit first, following the convention of most chips’ SPI 
interfaces. (In other words, RMI follows the DORD = ‘0’ convention of AVR microcontrollers.) 

RMI always changes both MISO and MOSI on the same clock edge, and it always samples both MISO 
and MOSI on the same (opposite) clock edge. (In other words, RMI follows the SMP = ‘0’ convention of 
PIC microcontrollers.) 

 Copyright © 2007—2008 Synaptics Incorporated. All Rights Reserved. 75 



Synaptics RMI3 Interfacing Guide   PN: 511-000099-01 Rev. F 

4.3.3. SPI transaction format 

The host (the SPI master) drives the SSB pin high between transactions, and low during a transaction (see 
Figure 50 and Figure 51). When SSB is high, the device (the SPI slave) floats its MISO pin and ignores 
the MOSI and SCK pins; this allows multiple devices to share the MISO, MOSI, and SCK pins provided 
that each device receives a separate SSB signal. When SSB is low, the device drives the MISO pin, and it 
samples MOSI and changes MISO in response to the clock waveform on SCK. SSB edges delimit a 
transaction; therefore, the host must hold SSB low continuously throughout a transaction. 

During the first two bytes (16 SCK pulses) after the fall of SSB, the host transmits an address word on 
MOSI, most significant byte first. In the address word, bit 15 is ‘1’ for a read transaction and ‘0’ for a 
write transaction. Bits 14:0 hold the register address R. During the first byte of the address word, the 
device transmits undefined data on MISO; then during the second byte of the address, the device 
transmits the Device Status register. 

For a read transaction, in subsequent bytes (groups of 8 SCK pulses), the device transmits on MISO the 
contents of consecutive registers starting from the addressed register, and MOSI is ignored. 

For a write transaction, in subsequent bytes, the host transmits on MOSI the write data for consecutive 
registers starting from the addressed register, and the device transmits undefined data on MISO. During a 
write transaction that writes several consecutive registers, the writing action to each register occurs as the 
transfer of the data byte for the register completes (except for a very few multi-byte quantities that are 
written only when the final byte is written, as described in section 2.1). 

Note:  This addressing mechanism is different from that of RMI-on-SMBus, but it is more consistent with 
the types of mechanisms most often used on SPI devices. 

The transaction ends when the host raises SSB. If the host raises SSB during or after either byte of the 
address word, no transaction occurs. If the host raises SSB during a write transaction when only a fraction 
of the 8 bits of a data byte have been transmitted, the register corresponding to that data byte is not 
written (but any registers written earlier in the transaction will already be committed). 

 

SSB

SCK

MOSI

MISO

= Don’t care / Unknown = SRQ 

$23 $40 $56 $78 $BC 

Dev Status

TDPB TDPWA TDPB TDPB

$DE 

Figure 50.  RMI-on-SPI write transaction (assuming CPOL = CPHA = ‘1’). 
Host writes $56, $78, $BC, and $DE to registers $2340–$2343, respectively. 
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SSB

SCK

MOSI

MISO

= Don’t care / Unknown = SRQ 

$84 $03 

$00 $01 Dev Status $83 $1E 

TDPB TDPRA TDPB TDPB

Figure 51.  RMI-on-SPI read transaction (assuming CPOL = CPHA = ‘1’). 
Host reads $83, $1E, $00, and $01 from registers $0403–$0406, respectively. 

4.3.4. SPI attention mechanism 

During the second address byte that begins a transaction, the device transmits the Device Status register 
(see section 2.5.3). The host can examine this byte to determine whether any data registers contain 
interrupt requests. 

Synaptics can offer RMI devices using either of two additional attention mechanisms. One mechanism 
uses a non-standard extension of the SPI interface called a “service request” (SRQ) bit. The other uses a 
separate fifth ATTN pin to hold the attention signal. 

Note:  The option for a separate attention pin accommodates hosts that cannot handle interrupts and 
MISO signals on the same host pin. It also may help in case RMI device interfaces must be implemented 
in non-Synaptics chips that cannot generate an SRQ-like bit on MISO. 

In the SRQ option, the RMI device drives the attention signal onto MISO as soon as SSB falls (see 
Figure 50 and Figure 51). The SRQ attention signal is “live” on MISO in the interval between the fall of 
SSB and the first SCK edge: The host may lower SSB, leave SCK at its idle level, and watch MISO using 
an interrupt to wait for an interrupt request report from the device. After the first SCK edge, it is 
undefined whether MISO continues to follow the “live” attention state, or freezes at the state of the 
attention signal at the time of the SCK edge. 

The SRQ signal may be “live,” but its behavior is relatively simple: The only change to MISO that can 
possibly occur during the SRQ period is one transition from the inactive to the active attention level, 
because attention, once asserted, can be deasserted only by a host transaction that reads the data registers 
or writes the Interrupt Enable bits. For RMI devices implemented using Synaptics’ SPI-compatible chips, 
MISO will freeze after the first SCK edge. 

Synaptics is also able to supply RMI devices that transmit the attention signal on a fifth ATTN pin. In this 
option, ATTN can be ordered either as an active-high push-pull output pin, or as an active-low open-drain 
pin for which the host must supply an external pull-up resistor. (The latter option allows multiple RMI 
devices’ ATTN pins to be merged in a wired-OR configuration. Because MISO is a fully driven push-pull 
output, the ATTN attention mechanism is better suited than SRQ to multi-device RMI systems.) 
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4.4. Sample ControlBar product address map 
This section defines a sample RMI product designed for ControlBar usage. This sample ControlBar 
product is assumed to have ten capacitive buttons and eight current-controlled LEDs. The register map in 
the following table describes the aliased addresses and bit assignments for a sample product: 

 
Aliased 
Address 

RMI 
Address 

Register Name 
7 6 5 4 3 2 1 0 

           
$00 $0400 Func18: Bu ton Data 0 t Butt n 7 o Butt n 6 o Butt n 5 o Butt n 4 o  Butt n 3 o Butt n 2 o Butt n 1 o Butt n 0 o                      
$01 $0401 Func18: Bu ton Data 1 t — — — — — — Butt n 9 o Butt n 8 o                      
$02 N/A Device Status register Er or r Confi uredg  — — — — — F18 Button                       
$21 $1841 Func18: Button Control Reg 0 — Button Usage Heavy Filter — — — —                       
$22 $1842 Func18: Button Control Reg 1 Button Sensitivity Adjust                       
$42 $2242 Func22: LED Enable Enable 7 Enable 6 Enable 5 Enable 4 Enable 3 Enable 2 Enable 1 Enable 0                       
$44 $2244 Func22: Ramp Period A Ramp Period A                       
$45 $2245 Func22: Ramp Period B Ramp Period B                       
$50 $2250 Func22: LED #0  Pat rn te Brightness                       
$51 $2251 Func22: LED #1  Pat rn te Brightness                       
$52 $2252 Func22: LED #2  Pat rn te Brightness                       
$53 $2253 Func22: LED #3  Pat rn te Brightness                       
$54 $2254 Func22: LED #4  Pat rn te Brightness                       
$55 $2255 Func22: LED #5  Pat rn te Brightness                       
$56 $2256 Func22: LED #6  Pat rn te Brightness                       
$57 $2257 Func22: LED #7  Pat rn te Brightness                       
$E4 $0204 Product Ma or Version j Major Version (Produc  Family) t                      
$E5 $0205 Product Mi or Version n Minor Version (Product Number)                       
$F0 $0000 Device Control Register Report Rate — — — Sleep Mode                        
$F1 $0001 Interrupt Enable Control 

Register — — — — — — — F18 Button 
                      

$F2 $0002 Error Status Register Error Code                       
$F3 $0003 Interrupt Request Status 

Register — — —  — — — — F18 Button 
                      

$F4 $0004 Device Command Register — — —  — — — Rezero Re et s                      
$FF $xxFF Page Sele t Register c — High 7 bits of 15-Bit RMI Page Address             
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Please review the Product Specification for your device, to find out the configuration of your required 
functions and the resulting register assignments. 
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Contact Us 
To locate the Synaptics office nearest you, visit our website at www.synaptics.com. 
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